本系列先前的博客中,从硬件配置开始,收集了Wifi信号数据并进行了一系列处理,最终将信号数据转化为图像数据,也即将信号识别问题转变为图像分类问题,从而能引入在图像处理领域已经非常成熟丰富的各类深度学习算法。
本博客是一篇新手导向的CNN处理CSI图像帧的教程,从前述教程中所得到的图像帧数据集为开始,进行图像分类任务的训练,适合没有多少代码基础的研究者。使用的平台为Matlab,借助其深度学习工具箱,可以做到不需要写一行代码也能进行简易的深度学习训练。
软件方面,需要新一点的Matlab版本,我所使用的为Matlab R2022a。
硬件方面,和大多数深度学习一样,显卡越新、显存越大越好,而台式又比笔记本好,同等配置台式显卡性能释放更好,具体要达到什么水平,视你所拥有的数据集复杂程度而言;我的数据集约有5万张图片,6GB RTX 2060的笔记本勉强也能跑,但是很耗时。
1、为Matlab安装Deep Learning Toolbox
参考下述博客:
Matlab 安装 Deep Learning Toolbox_matlab deep learning toolbox安装-CSDN博客
安装好后在命令行窗口键入:deepNetworkDesigner
会弹出初始选择网络结构的页面