基于matlab的sift变换的图像配准和拼接算法仿真

723 篇文章 1111 订阅 ¥39.90 ¥99.00
本文介绍了基于SIFT算法的图像配准和拼接技术,详细阐述了SIFT算法的四步流程:尺度空间极值检测、关键点定位、方向确定和关键点描述。此外,还展示了仿真效果,并提供了MATLAB仿真源码。
摘要由CSDN通过智能技术生成

目录

1.算法概述

2.仿真效果

3.MATLAB仿真源码


1.算法概述

       SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 该方法于1999年由David Lowe [2]  首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International journal of computer vision(IJCV)。截止2014年8月,该论文单篇被引次数达25000余次。

SIFT算法的特点有:       SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
       独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
       多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
       高速性&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值