基于kalman的NARX模型跟踪算法仿真

723 篇文章 1115 订阅 ¥39.90 ¥99.00
本文介绍了基于Kalman滤波的NARX模型跟踪算法,阐述了NARX模型在非线性动态系统建模、预测和滤波中的应用,并详细解析了算法的MATLAB仿真过程及2022a版本的仿真效果。
摘要由CSDN通过智能技术生成

目录

1.算法概述

2.仿真效果

3.MATLAB仿真源码


1.算法概述

        外因输入非线性自回归网络 (NARX) 是循环动态网络,其反馈连接包含网络的几个层。NARX 模型基于线性 ARX 模型,该模型通常用于时间序列建模。

NARX 模型的定义方程是

y(t)=f(y(t−1),y(t−2),…,y(t−ny),u(t−1),u(t−2),…,u(t−nu))

       其中从属输出信号 y(t) 的下一个值根据输出信号的先前值和独立(外因)输入信号的先前值进行回归。您可以通过使用前馈神经网络来逼近函数 f,从而实现 NARX 模型。生成的网络的图如下所示,其中两层前馈网络用于逼近。这种实现还支持向量 ARX 模型,其中输入和输出可以是多维的。

        NARX 网络有许多应用。它可以用作预测器,预测输入信号的下一个值。它也可用于非线性滤波,其中目标输出是输入信号的无噪声版本。NARX 网络可用于另一个重要应用,即非线性动态系统的建模。

       在说明 NARX 网络的训练之前,需要解释在训练中有用的一项重要配置。将 N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值