目录
1.算法概述
这些匹配点通常是基于描述符相似性创建的。为了实现这一目标,现有的尝试通常涉及在几何约束下估计图像变换,其中需要预定义的变换模型。这严重限制了适用性,因为转换可能因不同的数据而异,并且在许多实际任务中很复杂且难以建模。从一个新颖的角度,本文将特征匹配转化为具有异常值的空间聚类问题。主要思想是将假定的匹配自适应地聚类为几个运动一致的聚类以及一个异常值/失配聚类。为了实现空间聚类,我们在特征匹配的背景下定制了经典的基于密度的应用程序空间聚类方法(DBSCAN),这使我们的方法能够实现准线性时间复杂度。我们还设计了一种迭代聚类策略,以在数据严重退化的情况下提高匹配性能。对涉及不同类型图像转换的多个数据集进行的大量实验证明了我们的方法优于最先进的替代方法。我们的方法还应用于近似重复的图像检索和共同分割,并取得了可喜的性能。对涉及不同类型图像转换的多个数据集进行的大量实验证明了我们的方法优于最先进的替代方法。我们的方法还应用于近似重复的图像检索和共同分割,并取得了可喜的性能。
图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。配