[HDU 1796]How many integers can you find:容斥原理

点击这里查看原题

典型的容斥原理,枚举所有取数情况求最小公倍数
有几个坑需要注意:

  • 输入的数可能有0
  • 所有数的最小公倍数可能会爆int
/*
User:Small
Language:C++
Problem No.:1796
*/
#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
int n,m,p[15];
ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b){
    return a/gcd(a,b)*b;
}
int main(){
    freopen("data.in","r",stdin);//
    while(cin>>n>>m){
        int tot=0;
        for(int i=1;i<=m;i++)
            cin>>p[i];
        for(int i=1;i<=m;i++)
            if(p[i]) p[++tot]=p[i];
        m=tot;
        int ans=0;
        for(int i=1;i<(1<<m);i++){
            ll u=1,cnt=0;
            for(int j=0;j<m;j++){
                if((i>>j)&1){
                    cnt++;
                    u=lcm(u,p[j+1]);
                }
            }
            ans+=(n-1)/u*(cnt%2?1:-1);
        }
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值