ResNet代码解析

本文深入探讨ResNet模型的代码实现,揭示其背后的结构与工作原理,帮助读者理解深度学习中这一关键模型。
摘要由CSDN通过智能技术生成

ResNet模型代码解析

import torch.nn as nn
import torch

class BasicBlock(nn.Module):
    expassion = 1
    
    def _init_(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3,
                               stride=1,padding=1,bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
        
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        
        out = self.conv2(out)
        out = self.bn2(out)
        
        out += identity
        out = self.relu(out)
        
        return out
    
class Bottleneck(nn.Module):
    expansion = 4
   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值