Lane Segmentation模型定制与对比

构建项目baseline(训练、推断、配置文件)

  • baseline结构和实现
  • 语义分割的metrics
  • 语义分割的loss

训练

1.baseline 基本原则

  • no data augmentation
    尽可能不使用数据增强,便于筛选模型
  • no big model
    一般开始时使用模型选小的,降低试错的时间成本
  • low resolution(先做缩小)
    输入图像分辨率越大越好,但是资源占用高,baseline中尽量使用低分辨率输入图像。
  • little tricks
    类似于第一条,baseline中尽可能少的使用有效trick

2.训练过程

  1. 创建网络模型
  2. 加载预训练权重(可选)
  3. 设置优化器
  • SGD+Momentum 类比手动挡,对学习率等超参数敏感
  • Adam 类比自动挡 最常用的优化器
  1. 生成训练训练数据
    ** 主要参数**
    epoch/batchnum/(iterations)
    调整学习率(Decay逐渐衰减、cycle循环学习率,在最大值与最小值之前循环,如正弦余弦、warmup 缓慢上升学习率 )
    前向计算 (pred = model(input))
    计算损失 (loss = pred - label)
    反向传播

3. Metrics 模型评价标准

metrics与loss关系:
metrics 用来评价已经训练完毕的模型
loss 用在训练模型过程
原则上两者越一致越好,但实际情况为了方便优化,两者会有出入。
TP/FP/TN/FN
在这里插入图片描述
F1指标
计算方式如下,公式中准确率( TP/(TP+FP) )与召回率( TP/(TP+FN) )
在这里插入图片描述
图像分割中类别不平衡问题
图像分割本质为分类问题,但是当前景分割类别占据图像较小,背景占据图像较大面积时,训练过程中会趋向于预测最大的类别,即占据图像面积最对的类别,由此来得到最高的准确率。例如1000个样本,其中100个positive,900个negtive,则模型会趋向于将1000个样本全部预测为负样本,由此得到90%的准确率。 解决这种问题就要设计合理的评价标准。下图为类别不平衡案例:在这里插入图片描述

最后预测图为纯黑图像

在这里插入图片描述

IoU/Jaccard Index

IoU Loss = 1 - IoU

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值