神经网络激活函数与求导

神经网络激活函数求导

1、Sigmoid 激活函数

σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1
在这里插入图片描述

其导函数为:

σ ′ ( x ) = ∂ ∂ x 1 1 + e − x = e − x ( 1 + e − x ) 2 = 1 ( 1 + e − x ) 2 ⋅ e − x = 1 1 + e − x ⋅ ( 1 − 1 1 + e − x ) = σ ( x ) ⋅ ( 1 − σ ( x ) ) \begin{aligned} \sigma'(x) &= \frac{\partial}{\partial x}\frac{1}{1 + e^{-x}} \\\\&= \frac{e^{-x}}{(1 + e^{-x})^2}\\\\& = \frac{1}{(1 + e^{-x})^2}\cdot e^{-x}\\\\&=\frac{1}{1 + e^{-x}} \cdot (1 - \frac{1}{1 + e^{-x}})\\\\&=\sigma(x)\cdot (1 - \sigma(x))\end{aligned} σ(x)=x1+ex1=(1+ex)2ex=(1+ex)21ex=1+ex1(11+ex1)=σ(x)(1σ(x))​​​​

2、Tanh 激活函数

Tanh 函数可以看作是放大并平移的 Sigmoid 函数,但因为是零中心化的 (zero-centered) ,通常收敛速度快于 Sigmoid 函数,下图是二者的对比:

在这里插入图片描述

其函数形式为:

t a n h ( x ) = e x − e − x e x + e − x = 1 − e − 2 x 1 + e − 2 x = 2 − ( 1 + e − 2 x ) 1 + e − 2 x = 2 1 + e − 2 x − 1 = 2 σ ( 2 x ) − 1 \begin{aligned}tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} \\\\&= \frac{1 - e^{-2x}}{1 + e^{-2x}} \\\\&= \frac{2 - (1 + e^{-2x})}{1 + e^{-2x}} \\\\&= \frac{2}{1 + e^{-2x}} -1 \\\\&= 2\sigma(2x) - 1\end{aligned} tanh(x)=ex+exexex=1+e2x1e2x=1+e2x2(1+e2x)=1+e2x21=2σ(2x)1​​

其导函数为:

t a n h ′ ( x ) = ( e x + e − x ) 2 − ( e x − e − x ) 2 ( e x + e − x ) 2 = 1 − t a n h 2 ( x ) \begin{aligned}tanh'(x) &= \frac{(e^x + e^{-x})^2 -(e^x - e^{-x})^2}{(e^x + e^{-x})^2} \\\\&= 1-tanh^2(x)\end{aligned} tanh(x)=(ex+ex)2(ex+ex)2(exex)2=1tanh2(x)

3、Softmax 激活函数

Softmax 函数将多个标量映射为一个概率分布,其形式为:

y i = s o f t m a x ( z i ) = e z i ∑ j = 1 C e z j y_i = softmax(z_i) = \frac{e^{z_i}}{\sum\limits_{j=1}^{C}e^{z_j}} yi=softmax(zi)=j=1Cezjezi​​​

y i y_i yi​ 表示第 i i i​ 个输出值,即属于类别 i i i​​ 的概率, ∑ i = 1 C y i = 1 \sum\limits_{i = 1}^Cy_i = 1 i=1Cyi=1

z = W T x z = W^Tx z=WTx ,表示线性方程,Softmax 函数用于多分类,会对应多个方程。

在这里插入图片描述

首先求标量形式的导数,即第 i i i​ 个输出对于第 j j j​ 个输入的偏导数:

∂ y i ∂ z j = ∂ e z i ∑ j = 1 C e z j ∂ z j \frac{\partial y_i}{\partial z_j} = \frac{\partial \frac{e^{z_i}}{\sum\limits_{j=1}^{C}e^{z_j}}}{\partial z_j} zjyi=zjj=1Cezjezi​​

其中 e z i e^{z_i} ezi z j z_j zj 求导要分情况讨论:

∂ e z i ∂ z j = { e z i    ,    i f    i = j 0    ,    i f    i ≠ j \frac{\partial e^{z_i}}{\partial z_j} = \left \{\begin{aligned} & e^{z_i}\ \ , \ \ & if \ \ i = j \\ &0\ \ ,\ \ &if \ \ i \not= j \end{aligned}\right. zjezi={ezi  ,  0  ,  if  i=jif  i=j​​​​

那么当 i = j i = j i=j​​ 时:

∂ y i ∂ z j = e z i ∑ j = 1 C e z j − e z i e z j ( ∑ j = 1 C e z j ) 2 = e z i ∑ j = 1 C e z j − e z i ∑ j = 1 C e z j e z j ∑ j = 1 C e z j = y i − y i y j \begin{aligned}\frac{\partial y_i}{\partial z_j} &= \frac{e^{z_i}\sum\limits_{j=1}^Ce^{z_j} - e^{z_i}e^{z_j}}{(\sum\limits_{j=1}^Ce^{z_j})^2} \\\\&= \frac{e^{z_i}}{\sum\limits_{j=1}^Ce^{z_j}} - \frac{e^{z_i}}{\sum\limits_{j=1}^Ce^{z_j}}\frac{e^{z_j}}{\sum\limits_{j=1}^Ce^{z_j}} \\\\&= y_i - y_iy_j\end{aligned} zjyi=(j=1Cezj)2ezij=1Cezjeziezj=j=1Cezjezij=1Cezjezij=1Cezjezj=yiyiyj

i ≠ j i \not= j i=j​ 时:

∂ y i ∂ z j = 0 − e z i e z j ( ∑ j = 1 C e z j ) 2 = − y i y j \frac{\partial y_i}{\partial z_j} = \frac{0 - e^{z_i}e^{z_j}}{(\sum\limits_{j=1}^Ce^{z_j})^2} = -y_iy_j zjyi=(j=1Cezj)20eziezj=yiyj

两者合并:

∂ y i ∂ z j = 1 { i = j } y i − y i y j \frac{\partial y_i}{\partial z_j} = \pmb{1}\{i=j\}y_i - y_iy_j zjyi=111{i=j}yiyiyj

其中 1 { i = j } = { 1 , i f    i = j 0 , i f    i ≠ j \pmb{1}\{i=j\} = \left\{\begin{aligned} & 1, \quad if \ \ i = j \\&0,\quad if \ \ i \not= j \end{aligned}\right. 111{i=j}={1,if  i=j0,if  i=j

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MathDance

代码点亮人生,代码改变世界……

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值