机器学习模型评价指标ROC-AUC

混淆矩阵

首先,在试图弄懂ROC和AUC概念之前,你一定要彻底理解混淆矩阵的定义!

混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下:

  • 称预测类别为1的为Positive(阳性)
  • 预测类别为0的为Negative(阴性)
  • 预测正确的为True(真)
  • 预测错误的为False(伪)。

对上述概念进行组合,就产生了如下的混淆矩阵:
在这里插入图片描述

真正率假正率

然后,由此引出True Positive Rate(真正率)、False Positive Rate(假正率)两个概念:
T P R = T P T P + F N TPR = \frac{TP}{TP + FN} TPR=TP+FNTP
F P R = F P F P + T N FPR = \frac{FP}{FP + TN} FPR=FP+TNFP

仔细看这两个公式,发现其实TPR就是TP除以TP所在的列,FPR就是FP除以FP所在的列,二者意义如下:

TPR的意义是所有真实类别为1的样本中,预测类别为1的比例。
FPR的意义是所有真实类别为0的样本中,预测类别为1的比例。

ROC-AUC

如果上述概念都弄懂了,那么ROC曲线和AUC含义就信手拈来了:

按照定义,AUC即ROC曲线下的面积,而ROC曲线的横轴是FPR,纵轴是TPR,当二者相等时,即 y = x,如下图:
在这里插入图片描述
表示的意义是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的。

换句话说,分类器对于正例和负例毫无区分能力,和纯瞎蒙没什么区别,因此一般来说我们认为AUC的最小值为0.5。

理想情况

而我们希望分类器达到的效果是:对于真实类别为1的样本,分类器预测为1的概率(即TPR),要大于真实类别为0而预测类别为1的概率(即FPR),即y>x,因此大部分的ROC曲线长成下面这个样子:
在这里插入图片描述
最理想的情况下,既没有真实类别为1而错分为0的样本——TPR一直为1,也没有真实类别为0而错分为1的样本——FPR一直为0,AUC为1,这便是AUC的极大值。

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MathDance

代码点亮人生,代码改变世界……

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值