元素向量矩阵求导公式(学到家)


元素向量矩阵求导法则【如果你在学习过程,遇到问题,可以请我做私教!老司机带你飞!】

公式都是,我一行行,通过markdown敲出来的,经过验证的,正确无误的~

1、行向量对元素求导

y T = [ y 1   ⋯   y n ] y^T = [y_1\ \cdots\ y_n] yT=[y1  yn] 是 n 维行向量, x x x 是元素,则 ∂ y T ∂ x = [ ∂ y 1 ∂ x   ⋯   ∂ y n ∂ x ] \frac{\partial y^T}{\partial x} = [\frac{\partial y_1}{\partial x} \ \cdots\ \frac{\partial y_n}{\partial x}] xyT=[xy1  xyn]

2、列向量对元素求导

y = [ y 1 ⋮ y n ] y = \left[ \begin{matrix}y_1\\\vdots\\y_n\end{matrix}\right] y=y1yn 是 m 维列向量, x x x 是元素,则:

∂ y ∂ x = [ ∂ y 1 ∂ x ⋮ ∂ y n ∂ x ] \frac{\partial y}{\partial x} = \left[\begin{matrix}\frac{\partial y_1}{\partial x}\\\vdots\\\frac{\partial y_n}{\partial x}\end{matrix}\right] xy=xy1xyn

3、矩阵对元素求导

Y = [ y 11    ⋯    y 1 n ⋮    ⋮    ⋮ y m 1    ⋯    y m n ] Y = \left[\begin{matrix}&y_{11}\ \ &\cdots \ \ &y_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&y_{m1}\ \ &\cdots \ \ &y_{mn}\end{matrix}\right] Y=y11    ym1        y1nymn

m × n m \times n m×n 矩阵, x x x 是元素,则

∂ Y ∂ x = [ ∂ y 11 ∂ x    ⋯    ∂ y 1 n ∂ x ⋮    ⋮    ⋮ ∂ y m 1 ∂ x    ⋯    ∂ y m n ∂ x ] \frac{\partial Y}{\partial x } = \left[\begin{matrix}&\frac{\partial y_{11}}{\partial x}\ \ &\cdots \ \ &\frac{\partial y_{1n}}{\partial x}\\&\vdots\ \ &\vdots\ \ &\vdots\\&\frac{\partial y_{m1}}{\partial x}\ \ &\cdots\ \ &\frac{\partial y_{mn}}{\partial x}\end{matrix}\right] xY=xy11    xym1        xy1nxymn

4、元素对行向量求导

y y y 是元素, x T = [ x 1    ⋯    x n ] x^T = [x_1\ \ \cdots\ \ x_{n}] xT=[x1    xn] 是 n 维行向量,则

∂ y ∂ x T = [ ∂ y ∂ x 1    ⋯    ∂ y ∂ x n ] \frac{\partial y}{\partial x^T} = [\frac{\partial y}{\partial x_1}\ \ \cdots\ \ \frac{\partial y}{\partial x_n}] xTy=[x1y    xny]

5、元素对列向量求导

y y y 是元素, x = [ x 1 ⋮ x n ] x = \left[ \begin{matrix}x_1\\\vdots\\x_n\end{matrix}\right] x=x1xn 是 n 维列向量,则

∂ y ∂ x = [ ∂ y ∂ x 1 ⋮ ∂ y ∂ x n ] \frac{\partial y}{\partial x} = \left[\begin{matrix}\frac{\partial y}{\partial x_1}\\\vdots\\\frac{\partial y}{\partial x_n}\end{matrix}\right] xy=x1yxny

6、元素对矩阵求导

X = [ x 11    ⋯    x 1 n ⋮    ⋮    ⋮ x m 1    ⋯    x m n ] X = \left[\begin{matrix}&x_{11}\ \ &\cdots \ \ &x_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&x_{m1}\ \ &\cdots \ \ &x_{mn}\end{matrix}\right] X=x11    xm1        x1nxmn

m × n m \times n m×n 矩阵, y y y 是元素,则

∂ y ∂ X = [ ∂ y ∂ x 11    ⋯    ∂ y ∂ x 1 n ⋮    ⋮    ⋮ ∂ y ∂ x m 1    ⋯    ∂ y ∂ x m n ] \frac{\partial y}{\partial X} = \left[\begin{matrix}&\frac{\partial y}{\partial x_{11}}\ \ &\cdots\ \ &\frac{\partial y}{\partial x_{1n}}\\&\vdots\ \ &\vdots\ \ &\vdots\\&\frac{\partial y}{\partial x_{m1}}\ \ &\cdots\ \ &\frac{\partial y}{\partial x_{mn}}\end{matrix}\right] Xy=x11y    xm1y        x1nyxmny

7、行向量对列向量求导

y T = [ y 1   ⋯   y n ] y^T = [y_1\ \cdots\ y_n] yT=[y1  yn] 是 n 维行向量, x = [ x 1 ⋮ x m ] x = \left[\begin{matrix}x_1\\\vdots\\x_m\end{matrix}\right] x=x1xm 是 m 维列向量,则:

∂ y T ∂ x = [ ∂ y 1 ∂ x 1    ⋯    ∂ y n ∂ x 1 ⋮ ∂ y 1 ∂ x m    ⋯    ∂ y n ∂ x m ] \frac{\partial y^T}{\partial x} = \left[\begin{matrix}&\frac{\partial y_1}{\partial x_1}\ \ &\cdots\ \ &\frac{\partial y_n}{\partial x_1}\\&\vdots\\&\frac{\partial y_1}{\partial x_m}\ \ &\cdots\ \ &\frac{\partial y_n}{\partial x_m}\end{matrix}\right] xyT=x1y1  xmy1      x1ynxmyn

8、列向量对行向量求导

x T = [ x 1   ⋯   x n ] x^T = [x_1\ \cdots\ x_n] xT=[x1  xn] 是 n 维行向量, y = [ y 1 ⋮ y m ] y = \left[\begin{matrix}y_1\\\vdots\\y_m\end{matrix}\right] y=y1ym 是 m 维列向量,则:

∂ y ∂ x T = [ ∂ y 1 ∂ x 1    ⋯    ∂ y 1 ∂ x n ⋮ ∂ y m ∂ x 1    ⋯    ∂ y m ∂ x n ] \frac{\partial y}{\partial x^T} = \left[\begin{matrix}&\frac{\partial y_1}{\partial x_1}\ \ &\cdots\ \ &\frac{\partial y_1}{\partial x_n}\\&\vdots\\&\frac{\partial y_m}{\partial x_1}\ \ &\cdots\ \ &\frac{\partial y_m}{\partial x_n}\end{matrix}\right] xTy=x1y1  x1ym      xny1xnym

9、行向量对行向量求导

y T = [ y 1   ⋯   y n ] y^T = [y_1\ \cdots\ y_n] yT=[y1  yn] 是 n 维行向量, x T = [ x 1   ⋯   x m ] x^T = [x_1\ \cdots\ x_m] xT=[x1  xm] 是 m 维行向量,则

∂ y T ∂ x T = [ ∂ y T ∂ x 1   ⋯   ∂ y T ∂ x m ] \frac{\partial y^T}{\partial x^T} = [\frac{\partial y^T}{\partial x_1}\ \cdots\ \frac{\partial y^T}{\partial x_m}] xTyT=[x1yT  xmyT]

10、列向量对列向量求导

y = [ y 1 ⋮ y n ] y = \left[ \begin{matrix}y_1\\\vdots\\y_n\end{matrix}\right] y=y1yn 是 n 维列向量, x = [ x 1 ⋮ x m ] x = \left[ \begin{matrix}x_1\\\vdots\\x_m\end{matrix}\right] x=x1xm 是 m 维列向量,则

∂ y ∂ x = [ ∂ y 1 ∂ x ⋮ ∂ y n ∂ x ] \frac{\partial y}{\partial x} = \left[\begin{matrix}\frac{\partial y_1}{\partial x}\\\vdots\\\frac{\partial y_n}{\partial x}\end{matrix}\right] xy=xy1xyn

11、矩阵对行向量

Y = [ y 11    ⋯    y 1 n ⋮    ⋮    ⋮ y m 1    ⋯    y m n ] Y = \left[\begin{matrix}&y_{11}\ \ &\cdots \ \ &y_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&y_{m1}\ \ &\cdots \ \ &y_{mn}\end{matrix}\right] Y=y11    ym1        y1nymn

m × n m \times n m×n 矩阵, x T = [ x 1   ⋯   x q ] x^T = [x_1\ \cdots\ x_q] xT=[x1  xq] 是 q 维行向量,则

∂ Y ∂ x T = [ ∂ Y ∂ x 1   ⋯   ∂ Y ∂ x q ] \frac{\partial Y}{\partial x^T} = [\frac{\partial Y}{\partial x_1}\ \cdots\ \frac{\partial Y}{\partial x_q}] xTY=[x1Y  xqY]

12、矩阵对列向量

Y = [ y 11    ⋯    y 1 n ⋮    ⋮    ⋮ y m 1    ⋯    y m n ] Y = \left[\begin{matrix}&y_{11}\ \ &\cdots \ \ &y_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&y_{m1}\ \ &\cdots \ \ &y_{mn}\end{matrix}\right] Y=y11    ym1        y1nymn

m × n m \times n m×n 矩阵, x = [ x 1 ⋮ x q ] x = \left[ \begin{matrix}x_1\\\vdots\\x_q\end{matrix}\right] x=x1xq 是 q 维列向量,则

∂ Y ∂ x = [ ∂ y 11 ∂ x   ⋯   ∂ y 1 n ∂ x ⋮ ∂ y m 1 ∂ x   ⋯   ∂ y m n ∂ x ] \frac{\partial Y}{\partial x} = \left[\begin{matrix}&\frac{\partial y_{11}}{\partial x}\ &\cdots\ &\frac{\partial y_{1n}}{\partial x}\\&\vdots\\&\frac{\partial y_{m1}}{\partial x}\ &\cdots\ &\frac{\partial y_{mn}}{\partial x}\end{matrix}\right] xY=xy11 xym1   xy1nxymn

13、列向量对矩阵求导

y = [ y 1 ⋮ y n ] y = \left[\begin{matrix}y_1\\\vdots\\y_n\end{matrix}\right] y=y1yn 是 n 维列向量,设 X = [ x 11    ⋯    x 1 n ⋮    ⋮    ⋮ x m 1    ⋯    x m n ] X = \left[\begin{matrix}&x_{11}\ \ &\cdots \ \ &x_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&x_{m1}\ \ &\cdots \ \ &x_{mn}\end{matrix}\right] X=x11    xm1        x1nxmn m × n m \times n m×n 矩阵,则

∂ y ∂ X = [ ∂ y 1 ∂ X ⋮ ∂ y n ∂ X ] \frac{\partial y}{\partial X} = \left[\begin{matrix}\frac{\partial y_1}{\partial X}\\\vdots\\\frac{\partial y_n}{\partial X}\end{matrix}\right] Xy=Xy1Xyn

14、行向量对矩阵求导

y T = [ y 1   ⋯   y k ] y^T = [y_1 \ \cdots\ y_k] yT=[y1  yk] 是 k 维行向量, X = [ x 11    ⋯    x 1 n ⋮    ⋮    ⋮ x m 1    ⋯    x m n ] X = \left[\begin{matrix}&x_{11}\ \ &\cdots \ \ &x_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&x_{m1}\ \ &\cdots \ \ &x_{mn}\end{matrix}\right] X=x11    xm1        x1nxmn m × n m \times n m×n 矩阵,则

∂ y T ∂ X = [ ∂ y T ∂ x 11   ⋯   ∂ y T ∂ x 1 n ⋮ ∂ y T ∂ x m 1   ⋯   ∂ y T ∂ x m n ] \frac{\partial y^T}{\partial X} = \left[\begin{matrix}&\frac{\partial y^T}{\partial x_{11}}\ &\cdots\ &\frac{\partial y^T}{\partial x_{1n}}\\&\vdots\\&\frac{\partial y^T}{\partial x_{m1}}\ &\cdots\ &\frac{\partial y^T}{\partial x_{mn}}\end{matrix}\right] XyT=x11yT xm1yT   x1nyTxmnyT

15、矩阵对矩阵求导

Y = [ y 11    ⋯    y 1 n ⋮    ⋮    ⋮ y m 1    ⋯    y m n ] = [ y 1 T ⋮ y m T ] Y = \left[\begin{matrix}&y_{11}\ \ &\cdots \ \ &y_{1n}\\&\vdots\ \ &\vdots \ \ &\vdots\\&y_{m1}\ \ &\cdots \ \ &y_{mn}\end{matrix}\right] = \left[\begin{matrix}y_1^T\\\vdots\\y_m^T\end{matrix}\right] Y=y11    ym1        y1nymn=y1TymT

m × n m \times n m×n 矩阵, X = [ x 11    ⋯    x 1 q ⋮    ⋮    ⋮ x p 1    ⋯    x p q ] = [ x 1   ⋯   x q ] X = \left[\begin{matrix}&x_{11}\ \ &\cdots \ \ &x_{1q}\\&\vdots\ \ &\vdots \ \ &\vdots\\&x_{p1}\ \ &\cdots \ \ &x_{pq}\end{matrix}\right] = [x_1\ \cdots\ x_q] X=x11    xp1        x1qxpq=[x1  xq] p × q p \times q p×q 矩阵,则:

∂ Y ∂ X = [ ∂ Y ∂ x 1   ⋯   ∂ Y ∂ x q ] = [ ∂ y 1 T ∂ X ⋮ ∂ y m T ∂ X ] = [ ∂ y 1 T ∂ x 1   ⋯   ∂ y 1 T ∂ x q ⋮ ∂ y m T ∂ x 1   ⋯   ∂ y m T ∂ x q ] \begin{aligned}\frac{\partial Y}{\partial X} &= [\frac{\partial Y}{\partial x_1}\ \cdots\ \frac{\partial Y}{\partial x_q}] = \left[\begin{matrix}\frac{\partial y_1^T}{\partial X}\\\vdots\\\frac{\partial y_m^T}{\partial X}\end{matrix}\right]\\\\&=\left[\begin{matrix}&\frac{\partial y_1^T}{\partial x_1}\ &\cdots\ &\frac{\partial y_1^T}{\partial x_q}\\&\vdots\\&\frac{\partial y_m^T}{\partial x_1}\ &\cdots\ &\frac{\partial y_m^T}{\partial x_q}\end{matrix}\right]\end{aligned} XY=[x1Y  xqY]=Xy1TXymT=x1y1T x1ymT   xqy1TxqymT

16、案例一

Y = [ 2 x y   y 2   y x 2   2 x y   x ] Y = \left[\begin{matrix}&2xy\ &y^2\ &y\\&x^2\ & 2xy\ &x\end{matrix}\right] Y=[2xy x2 y2 2xy yx] v = [ x y ] v = \left[\begin{matrix}x\\y\end{matrix}\right] v=[xy]

根据【12】矩阵对列向量求导法则,则:

∂ Y ∂ v = [ ∂ ( 2 x y ) ∂ v   ∂ ( y 2 ) ∂ v   ∂ y ∂ v ∂ ( x 2 ) ∂ v   ∂ ( 2 x y ) ∂ v   ∂ x ∂ v ] = [ 2 y   0   0 2 x   2 y   1 2 x   2 y   1 0   2 x   0 ] \begin{aligned}\frac{\partial Y}{\partial v} &= \left[\begin{matrix}&\frac{\partial (2xy)}{\partial v}\ &\frac{\partial (y^2)}{\partial v}\ &\frac{\partial y}{\partial v}\\&\frac{\partial (x^2)}{\partial v}\ &\frac{\partial(2xy)}{\partial v}\ &\frac{\partial x}{\partial v}\end{matrix}\right]\\\\&=\left[\begin{matrix}&2y \ &0\ &0\\&2x\ &2y\ &1\\&2x\ &2y\ &1\\&0\ &2x\ &0\end{matrix}\right]\end{aligned} vY=[v(2xy) v(x2) v(y2) v(2xy) vyvx]=2y 2x 2x 0 0 2y 2y 2x 0110

17、案例二

设矩阵 Y = [ a   b   c d   e   f ] Y = \left[\begin{matrix}&a\ &b\ &c\\&d\ &e\ &f\end{matrix}\right] Y=[a d b e cf]

矩阵 X = [ u   x v   y w   z ] X = \left[\begin{matrix}&u\ &x\\&v\ &y\\&w\ &z\end{matrix}\right] X=u v w xyz

根据【15】矩阵对矩阵求导公式,则:

∂ Y ∂ X = [ ∂ [ a   b   c ] ∂ [ u v w ]   ∂ [ a   b   c ] ∂ [ x y z ] ∂ [ d   e   f ] ∂ [ u v w ]   ∂ [ d   e   f ] ∂ [ x y z ] ] = [ ∂ a ∂ u   ∂ b ∂ u   ∂ c ∂ u   ∂ a ∂ x   ∂ b ∂ x   ∂ c ∂ x   ∂ a ∂ v   ∂ b ∂ v   ∂ c ∂ v   ∂ a ∂ y   ∂ b ∂ y   ∂ c ∂ y   ∂ a ∂ w   ∂ b ∂ w   ∂ c ∂ w   ∂ a ∂ z   ∂ b ∂ z   ∂ c ∂ z   ∂ d ∂ u   ∂ e ∂ u   ∂ f ∂ u   ∂ d ∂ x   ∂ e ∂ x   ∂ f ∂ x   ∂ d ∂ v   ∂ e ∂ v   ∂ f ∂ v   ∂ d ∂ y   ∂ e ∂ y   ∂ f ∂ y ∂ d ∂ w   ∂ e ∂ w   ∂ f ∂ w   ∂ d ∂ z   ∂ e ∂ z   ∂ f ∂ z ] \begin{aligned}\frac{\partial Y}{\partial X} &= \left[\begin{matrix}&\frac{\partial [a\ b\ c]}{\partial \left[\begin{matrix}u\\v\\w\end{matrix}\right]}\ &\frac{\partial [a\ b\ c]}{\partial \left[\begin{matrix}x\\y\\z\end{matrix}\right]}\\\\&\frac{\partial [d\ e\ f]}{\partial \left[\begin{matrix}u\\v\\w\end{matrix}\right]}\ &\frac{\partial [d\ e\ f]}{\partial \left[\begin{matrix}x\\y\\z\end{matrix}\right]}\end{matrix}\right]\\\\&=\left[\begin{matrix}&\frac{\partial a}{\partial u}\ &\frac{\partial b}{\partial u}\ &\frac{\partial c}{\partial u}\ &\frac{\partial a}{\partial x}\ &\frac{\partial b}{\partial x}\ &\frac{\partial c}{\partial x}\ \\\\&\frac{\partial a}{\partial v}\ &\frac{\partial b}{\partial v}\ &\frac{\partial c}{\partial v}\ &\frac{\partial a}{\partial y}\ &\frac{\partial b}{\partial y}\ &\frac{\partial c}{\partial y}\ \\\\&\frac{\partial a}{\partial w}\ &\frac{\partial b}{\partial w}\ &\frac{\partial c}{\partial w}\ &\frac{\partial a}{\partial z}\ &\frac{\partial b}{\partial z}\ &\frac{\partial c}{\partial z}\ \\\\&\frac{\partial d}{\partial u}\ &\frac{\partial e}{\partial u}\ &\frac{\partial f}{\partial u}\ &\frac{\partial d}{\partial x}\ &\frac{\partial e}{\partial x}\ &\frac{\partial f}{\partial x}\ \\\\&\frac{\partial d}{\partial v}\ &\frac{\partial e}{\partial v}\ &\frac{\partial f}{\partial v}\ &\frac{\partial d}{\partial y}\ &\frac{\partial e}{\partial y}\ &\frac{\partial f}{\partial y} \\\\&\frac{\partial d}{\partial w}\ &\frac{\partial e}{\partial w}\ &\frac{\partial f}{\partial w}\ &\frac{\partial d}{\partial z}\ &\frac{\partial e}{\partial z}\ &\frac{\partial f}{\partial z}\end{matrix}\right]\end{aligned} XY=[uvw][a b c] [uvw][d e f] [xyz][a b c][xyz][d e f]=ua va wa ud vd wd ub vb wb ue ve we uc vc wc uf vf wf xa ya za xd yd zd xb yb zb xe ye ze xc yc zc xf yfzf

我要做的事情是,庖丁解书,让你看个通透,学个明白。既有文章,又有视频。包教包会,学不会一定不是学生的问题,而是老师的问题!

你有任何Python代码问题,欢迎交流,两小时(1000元私教费用!),深入学习~

代码点亮人生,代码改变世界~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MathDance

代码点亮人生,代码改变世界……

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值