线性可分的二维超平面
生成数据
利用sklearn中make_blobs函数,
X, Y = make_blobs(n_samples=30, n_features=2, centers=2,
random_state=3, cluster_std=1)
n_samples: 待生成的样本的总数,如果不设置默认是100个。
n_features: 每个样本的特征数,如果不设置默认是2个。
centers: 要生成的样本中心(类别)数,或者是确定的中心点,如果不设置 默认是2个。
cluster_std: 每个类别的方差,例如我们希望生成2类数据,其中一类比另一 类具有更大的方差,可以将cluster_std设置为[1.0,3.0],如果不设置默认1.0。
random_state: 是随机数生成器使用的种子,我试了试会影响超平面的方向。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets.samples_generator import make_blobs
# we create 30 separable pointS
X, Y