画SVM支持向量机线性超平面

线性可分的二维超平面

生成数据
利用sklearn中make_blobs函数,

X, Y = make_blobs(n_samples=30, n_features=2, centers=2,
                  random_state=3, cluster_std=1)

n_samples: 待生成的样本的总数,如果不设置默认是100个。
n_features: 每个样本的特征数,如果不设置默认是2个。
centers: 要生成的样本中心(类别)数,或者是确定的中心点,如果不设置 默认是2个。
cluster_std: 每个类别的方差,例如我们希望生成2类数据,其中一类比另一 类具有更大的方差,可以将cluster_std设置为[1.0,3.0],如果不设置默认1.0。
random_state: 是随机数生成器使用的种子,我试了试会影响超平面的方向。

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets.samples_generator import make_blobs

# we create 30 separable pointS
X, Y 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值