pytorch做回归任务

这篇博客记录了使用PyTorch进行回归任务的实践经验,包括数据格式处理,网络代码编写以及一些关键操作的解释,如x.reshape(1, -1)用于转换数据形状,torch.nn.MSELoss()的不同还原方法影响输出结果。" 51418863,4846971,平衡二叉树(AVL Tree)详解及旋转操作,"['数据结构', '二叉平衡树', '二叉树操作']
摘要由CSDN通过智能技术生成

记录写的第一个深度学习网络–pytorch做回归任务

数据格式

用open-change7个变量预测label
在这里插入图片描述

代码

#  导入库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
from sklearn import preprocessing
#  导入数据集
#  训练集和测试集导入数据
data = pd.read_csv(r'stock_train.csv',encoding='utf-8')
data_test1 = pd.read_csv(r'stock_test.csv',encoding='utf-8')
#  导入训练集因变量
y_train = np.array(data.label)
y_train = y_train.reshape(-1, 1)
y_train = preprocessing.StandardScaler().fit_transform(y_train)
#  导入训练集自变量
data_train = data.drop('label', axis = 1)
data_train = data_train.drop(columns = 'date', axis = 1)
x_train = np.array(data_train)
x_train 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值