用pytorch 实现逻辑回归

用pytorch 实现逻辑回归

  • 构造数据集:
n_data = torch.ones(100, 2)
x0 = torch.normal(2 * n_data, 1)  # 生成均值为2.标准差为1的随机数组成的矩阵 shape=(100, 2)
y0 = torch.zeros(100)
x1 = torch.normal(-2 * n_data, 1)  # 生成均值为-2.标准差为1的随机数组成的矩阵 shape=(100, 2)
y1 = torch.ones(100)

#合并数据x,y
x=torch.cat((x0,x1),0).type(torch.FloatTensor)
y=torch.cat((y0,y1),0).type(torch.FloatTensor)
  • 根据构造的数据集显示图像
    在这里插入图片描述
    从图中看到,数据集区分比较明显。
  • 构建逻辑回归的网络
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression,self).__init__()
        self.lr=nn.Linear(2,1)   #相当于通过线性变换y=x*T(A)+b可以得到对应的各个系数
        self.sm=nn.Sigmoid()   #相当于通过激活函数的变换

    def forward(self, x):
        x=self.lr(x)
        x=self.sm(x)
        return x
  • 定义损失函数和优化器
criterion=nn.BCELoss()   #选用BCE损失函数,该损失函数是只用于2分类问题的损失函数
optimizer=torch.optim.SGD(logistic_model.parameters(),lr=1e-3,momentum=0.9)  #采用随机梯度下降的方法
  • 开始训练
#开始训练
#训练10000次
for epoch in range(10000):
    if torch.cuda.is_available():
        x_data=Variable(x).cuda()
        y_data=Variable(y).cuda()
    else:
        x_data=Variable(x)
        y_data=Variable(y)

    out=logistic_model(x_data)  #根据逻辑回归模型拟合出的y值

    loss=criterion(out,y_data)  #计算损失函数
    print_loss=loss.data.item()  #得出损失函数值
    mask=out.ge(0.5).float()  #以0.5为阈值进行分类
    correct=(mask==y_data).sum()  #计算正确预测的样本个数
    acc=correct.item()/x_data.size(0)  #计算精度
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    #每隔20轮打印一下当前的误差和精度
    if (epoch+1)%20==0:
        print('*'*10)
        print('epoch {}'.format(epoch+1))  #误差
        print('loss is {:.4f}'.format(print_loss))
        print('acc is {:.4f}'.format(acc))  #精度
  • 输出结果
**********
epoch 9980
loss is 0.0179
acc is 100.0000
**********
epoch 10000
loss is 0.0179
acc is 100.0000
  • 输出结果的图像
    在这里插入图片描述
    从图中看到分类还是比较明显
  • 完整代码
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
from torch.autograd import Variable
import numpy as np


n_data = torch.ones(100, 2)
x0 = torch.normal(2 * n_data, 1)  # 生成均值为2.标准差为1的随机数组成的矩阵 shape=(100, 2)
y0 = torch.zeros(100)
x1 = torch.normal(-2 * n_data, 1)  # 生成均值为-2.标准差为1的随机数组成的矩阵 shape=(100, 2)
y1 = torch.ones(100)

#合并数据x,y
x=torch.cat((x0,x1),0).type(torch.FloatTensor)
y=torch.cat((y0,y1),0).type(torch.FloatTensor)

print(x.data.numpy()[:,0])
#画图
# plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
# plt.show()

class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression,self).__init__()
        self.lr=nn.Linear(2,1)   #相当于通过线性变换y=x*T(A)+b可以得到对应的各个系数
        self.sm=nn.Sigmoid()   #相当于通过激活函数的变换

    def forward(self, x):
        x=self.lr(x)
        x=self.sm(x)
        return x

logistic_model=LogisticRegression()
if torch.cuda.is_available():
    logistic_model.cuda()


#定义损失函数和优化器
criterion=nn.BCELoss()   #选用BCE损失函数,该损失函数是只用于2分类问题的损失函数
optimizer=torch.optim.SGD(logistic_model.parameters(),lr=1e-3,momentum=0.9)  #采用随机梯度下降的方法

#开始训练
#训练10000次
for epoch in range(10000):
    if torch.cuda.is_available():
        x_data=Variable(x).cuda()
        y_data=Variable(y).cuda()
    else:
        x_data=Variable(x)
        y_data=Variable(y)

    out=logistic_model(x_data)  #根据逻辑回归模型拟合出的y值

    loss=criterion(out,y_data)  #计算损失函数
    print_loss=loss.data.item()  #得出损失函数值
    mask=out.ge(0.5).float()  #以0.5为阈值进行分类
    correct=(mask==y_data).sum()  #计算正确预测的样本个数
    acc=correct.item()/x_data.size(0)  #计算精度
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    #每隔20轮打印一下当前的误差和精度
    if (epoch+1)%20==0:
        print('*'*10)
        print('epoch {}'.format(epoch+1))  #误差
        print('loss is {:.4f}'.format(print_loss))
        print('acc is {:.4f}'.format(acc))  #精度


# 结果可视化
w0,w1=logistic_model.lr.weight[0]
w0=float(w0.item())
w1=float(w1.item())
b=float(logistic_model.lr.bias.item())
plot_x=np.arange(-7,7,0.1)
plot_y=(-w0*plot_x-b)/w1
plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
plt.plot(plot_x,plot_y)
plt.show()
  • 5
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
好的,下面是使用 PyTorch 实现逻辑回归的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义数据 X = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]]) y = torch.tensor([[0.0], [0.0], [1.0], [1.0]]) # 定义模型 class LogisticRegression(nn.Module): def __init__(self, input_dim, output_dim): super(LogisticRegression, self).__init__() self.linear = nn.Linear(input_dim, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.linear(x) out = self.sigmoid(out) return out model = LogisticRegression(input_dim=2, output_dim=1) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=0.1) # 训练模型 num_epochs = 1000 for epoch in range(num_epochs): # 前向传播 outputs = model(X) loss = criterion(outputs, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失值 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 预测 with torch.no_grad(): predicted = model(X).round() print('Predicted Values:', predicted) ``` 上述代码中: - `X` 和 `y` 分别表示输入和输出数据; - `LogisticRegression` 类定义了模型,其中包含一个线性层和一个 sigmoid 函数,用于计算输出; - `BCELoss` 是二元交叉熵损失函数,用于计算损失值; - `SGD` 是随机梯度下降优化器,用于优化模型; - `num_epochs` 表示训练的次数; - 在训练过程中,首先进行前向传播计算,然后计算损失值,接着进行反向传播和优化; - 在训练结束后,使用训练好的模型进行预测,输出预测结果。 注意:在实际应用中,需要对数据进行预处理和归一化等操作。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值