计算机视觉论文-2021-03-03

本专栏是计算机视觉方向论文收集积累,时间:2021年3月3日,来源:paper digest

欢迎关注原创公众号 【计算机视觉联盟】,回复 【西瓜书手推笔记】 可获取我的机器学习纯手推笔记!

直达笔记地址:机器学习手推笔记(GitHub地址)

1, TITLE: DeepMerge II: Building Robust Deep Learning Algorithms for Merging Galaxy Identification Across Domains
AUTHORS: A. ?IPRIJANOVI? et. al.
CATEGORY: astro-ph.IM [astro-ph.IM, astro-ph.GA, cs.AI, cs.CV, cs.LG]
HIGHLIGHT: With further development, these techniques will allow astronomers to successfully implement neural network models trained on simulation data to efficiently detect and study astrophysical objects in current and future large-scale astronomical surveys.

2, TITLE: PHASE: PHysically-grounded Abstract Social Events for Machine Social Perception
AUTHORS: Aviv Netanyahu ; Tianmin Shu ; Boris Katz ; Andrei Barbu ; Joshua B. Tenenbaum
CATEGORY: cs.AI [cs.AI, cs.CV, cs.LG, stat.ML]
HIGHLIGHT: In this work, we create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions by including social concepts such as helping another agent.

3, TITLE: Dual Reinforcement-Based Specification Generation for Image De-Rendering
AUTHORS: Ramakanth Pasunuru ; David Rosenberg ; Gideon Mann ; Mohit Bansal
CATEGORY: cs.CL [cs.CL, cs.AI, cs.CV]
HIGHLIGHT: Since these are sequence models, we must choose an ordering of the objects in the graphics programs for likelihood training.

4, TITLE: IdentityDP: Differential Private Identification Protection for Face Images
AUTHORS: Yunqian Wen ; Li Song ; Bo Liu ; Ming Ding ; Rong Xie
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we focus on tackling these challenges to improve face de-identification.

5, TITLE: Comparison of Methods Generalizing Max- and Average-Pooling
AUTHORS: Florentin Bieder ; Robin Sandk�hler ; Philippe C. Cattin
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: In this paper, we compare different pooling methods that generalize both max- and average-pooling.

6, TITLE: AttriMeter: An Attribute-guided Metric Interpreter for Person Re-Identification
AUTHORS: XIAODONG CHEN et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: Therefore, we propose an Attribute-guided Metric Interpreter, named AttriMeter, to semantically and quantitatively explain the results of CNN-based ReID models.

7, TITLE: Diffusion Probabilistic Models for 3D Point Cloud Generation
AUTHORS: Shitong Luo ; Wei Hu
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: We present a probabilistic model for point cloud generation, which is critical for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation.

8, TITLE: Image-to-image Translation Via Hierarchical Style Disentanglement
AUTHORS: XINYANG LI et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we propose Hierarchical Style Disentanglement (HiSD) to address this issue.

9, TITLE: Auto-Exposure Fusion for Single-Image Shadow Removal
AUTHORS: LAN FU et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: This paper proposes a new solution for this task by formulating it as an exposure fusion problem to address the challenges.

10, TITLE: Maximal Function Pooling with Applications
AUTHORS: Wojciech Czaja ; Weilin Li ; Yiran Li ; Mike Pekala
CATEGORY: cs.CV [cs.CV, cs.IT, math.IT]
HIGHLIGHT: Inspired by the Hardy-Littlewood maximal function, we propose a novel pooling strategy which is called maxfun pooling.

11, TITLE: A Structurally Regularized Convolutional Neural Network for Image Classification Using Wavelet-based SubBand Decomposition
AUTHORS: Pavel Sinha ; Ioannis Psaromiligkos ; Zeljko Zilic
CATEGORY: cs.CV [cs.CV, eess.IV]
HIGHLIGHT: We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets.

12, TITLE: Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
AUTHORS: Chenchen Zhu ; Fangyi Chen ; Uzair Ahmed ; Marios Savvides
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this work, we investigate utilizing this semantic relation together with the visual information and introduce explicit relation reasoning into the learning of novel object detection.

13, TITLE: A Deep Emulator for Secondary Motion of 3D Characters
AUTHORS: Mianlun Zheng ; Yi Zhou ; Duygu Ceylan ; Jernej Barbic
CATEGORY: cs.CV [cs.CV, cs.GR]
HIGHLIGHT: We present a learning-based approach to enhance skinning-based animations of 3D characters with vivid secondary motion effects.

14, TITLE: WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning
AUTHORS: Krishna Srinivasan ; Karthik Raman ; Jiecao Chen ; Michael Bendersky ; Marc Najork
CATEGORY: cs.CV [cs.CV, cs.CL, cs.IR]
HIGHLIGHT: In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset\footnote{\url{https://github.com/google-research-datasets/wit}} to better facilitate multimodal, multilingual learning.

15, TITLE: Network Pruning Via Resource Reallocation
AUTHORS: Yuenan Hou ; Zheng Ma ; Chunxiao Liu ; Zhe Wang ; Chen Change Loy
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we propose a simple yet effective channel pruning technique, termed network Pruning via rEsource rEalLocation (PEEL), to quickly produce a desired slim model with negligible cost.

16, TITLE: Masked Face Recognition: Human Vs. Machine
AUTHORS: NASER DAMER et. al.
CATEGORY: cs.CV [cs.CV, cs.CY]
HIGHLIGHT: This work provides a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions.

17, TITLE: Square Root Bundle Adjustment for Large-Scale Reconstruction
AUTHORS: Nikolaus Demmel ; Christiane Sommer ; Daniel Cremers ; Vladyslav Usenko
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: We propose a new formulation for the bundle adjustment problem which relies on nullspace marginalization of landmark variables by QR decomposition.

18, TITLE: Geometry-Guided Street-View Panorama Synthesis from Satellite Imagery
AUTHORS: Yujiao Shi ; Dylan Campbell ; Xin Yu ; Hongdong Li
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: This paper presents a new approach for synthesizing a novel street-view panorama given an overhead satellite image.

19, TITLE: HED-UNet: Combined Segmentation and Edge Detection for Monitoring The Antarctic Coastline
AUTHORS: Konrad Heidler ; Lichao Mou ; Celia Baumhoer ; Andreas Dietz ; Xiao Xiang Zhu
CATEGORY: cs.CV [cs.CV, eess.IV]
HIGHLIGHT: To take into account this task duality, we therefore devise a new model to unite these two approaches in a deep learning model.

20, TITLE: All at Once Network Quantization Via Collaborative Knowledge Transfer
AUTHORS: XIMENG SUN et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we develop a novel collaborative knowledge transfer approach for efficiently training the all-at-once quantization network.

21, TITLE: Inter-class Discrepancy Alignment for Face Recognition
AUTHORS: JIAHENG LIU et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this study, we make a key observation that the local con-text represented by the similarities between the instance and its inter-class neighbors1plays an important role forFR.

22, TITLE: Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain
AUTHORS: HONGGU LIU et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: To this end, we present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery to improve the transferability, for face forgery detection.

23, TITLE: Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning
AUTHORS: Mamshad Nayeem Rizve ; Salman Khan ; Fahad Shahbaz Khan ; Mubarak Shah
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: In this work, we build on this insight and propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.

24, TITLE: Brain-inspired Algorithms for Processing of Visual Data
AUTHORS: Nicola Strisciuglio
CATEGORY: cs.CV [cs.CV, eess.IV]
HIGHLIGHT: In this paper, we review approaches for image processing and computer vision, the design of which is based on neuro-scientific findings about the functions of some neurons in the visual cortex.

25, TITLE: Using CNNs to Identify The Origin of Finger Vein Image
AUTHORS: Babak Maser ; Andreas Uhl
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: We study the finger vein (FV) sensor model identification task using a deep learning approach.

26, TITLE: On The Generalisation Capabilities of Fisher Vector Based Face Presentation Attack Detection
AUTHORS: L�zaro J. Gonz�lez-Soler ; Marta Gomez-Barrero ; Christoph Busch
CATEGORY: cs.CV [cs.CV, cs.IT, cs.LG, math.IT]
HIGHLIGHT: In this work, we use a new feature space based on Fisher Vectors, computed from compact Binarised Statistical Image Features histograms, which allow discovering semantic feature subsets from known samples in order to enhance the detection of unknown attacks.

27, TITLE: Interpretable Hyperspectral AI: When Non-Convex Modeling Meets Hyperspectral Remote Sensing
AUTHORS: DANFENG HONG et. al.
CATEGORY: cs.CV [cs.CV, cs.AI, eess.IV]
HIGHLIGHT: For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications.

28, TITLE: Depth from Camera Motion and Object Detection
AUTHORS: Brent A. Griffin ; Jason J. Corso
CATEGORY: cs.CV [cs.CV, cs.RO]
HIGHLIGHT: This paper addresses the problem of learning to estimate the depth of detected objects given some measurement of camera motion (e.g., from robot kinematics or vehicle odometry).

29, TITLE: A Novel CNN-LSTM-based Approach to Predict Urban Expansion
AUTHORS: Wadii Boulila ; Hamza Ghandorh ; Mehshan Ahmed Khan ; Fawad Ahmed ; Jawad Ahmad
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: Building upon previous work, we propose a novel two-step approach based on semantic image segmentation in order to predict urban expansion.

30, TITLE: Image/Video Deep Anomaly Detection: A Survey
AUTHORS: Bahram Mohammadi ; Mahmood Fathy ; Mohammad Sabokrou
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods.

31, TITLE: Exploiting Latent Representation of Sparse Semantic Layers for Improved Short-term Motion Prediction with Capsule Networks
AUTHORS: Albert Dulian ; John C. Murray
CATEGORY: cs.CV [cs.CV, cs.AI]
HIGHLIGHT: We train and evaluate our model on publicly available dataset nuTonomy scenes and compare it to recently published methods.

32, TITLE: Contextually Guided Convolutional Neural Networks for Learning Most Transferable Representations
AUTHORS: Olcay Kursun ; Semih Dinc ; Oleg V. Favorov
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: Implementing such local contextual guidance principles in a single-layer CNN architecture, we propose an efficient algorithm for developing broad-purpose representations (i.e., representations transferable to new tasks without additional training) in shallow CNNs trained on limited-size datasets.

33, TITLE: When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework
AUTHORS: Zhizhong Huang ; Junping Zhang ; Hongming Shan
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: Therefore, this paper proposes a unified, multi-task framework to jointly handle these two tasks, termed \methodname, which can learn age-invariant identity-related representation while achieving pleasing face synthesis. In addition, we collect and release a large cross-age face dataset with age and gender annotations to advance the development of the AIFR and FAS.

34, TITLE: Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition
AUTHORS: Stephen Hausler ; Sourav Garg ; Ming Xu ; Michael Milford ; Tobias Fischer
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: This paper introduces Patch-NetVLAD, which provides a novel formulation for combining the advantages of both local and global descriptor methods by deriving patch-level features from NetVLAD residuals.

35, TITLE: There Is More Than Meets The Eye: Self-Supervised Multi-Object Detection and Tracking with Sound By Distilling Multimodal Knowledge
AUTHORS: Francisco Rivera Valverde ; Juana Valeria Hurtado ; Abhinav Valada
CATEGORY: cs.CV [cs.CV, cs.LG, cs.RO]
HIGHLIGHT: In this work, we present the novel self-supervised MM-DistillNet framework consisting of multiple teachers that leverage diverse modalities including RGB, depth and thermal images, to simultaneously exploit complementary cues and distill knowledge into a single audio student network. We introduce a large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities.

36, TITLE: A Comprehensive Study on Face Recognition Biases Beyond Demographics
AUTHORS: PHILIPP TERH�RST et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: Therefore, in this work, we analyse FR bias over a wide range of attributes.

37, TITLE: Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational Graph
AUTHORS: Xin Ye ; Yezhou Yang
CATEGORY: cs.CV [cs.CV, cs.RO]
HIGHLIGHT: We present a novel two-layer hierarchical reinforcement learning approach equipped with a Goals Relational Graph (GRG) for tackling the partially observable goal-driven task, such as goal-driven visual navigation.

38, TITLE: Simulation-to-Real Domain Adaptation with Teacher-student Learning for Endoscopic Instrument Segmentation
AUTHORS: Manish Sahu ; Anirban Mukhopadhyay ; Stefan Zachow
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: Methods: We introduce a teacher-student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the erroneous learning problem of the current consistency-based unsupervised domain adaptation framework.

39, TITLE: Brain Programming Is Immune to Adversarial Attacks: Towards Accurate and Robust Image Classification Using Symbolic Learning
AUTHORS: Gerardo Ibarra-Vazquez ; Gustavo Olague ; Mariana Chan-Ley ; Cesar Puente ; Carlos Soubervielle-Montalvo
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this work, we perform a comparative study of the effects of AA on the complex problem of art media categorization, which involves a sophisticated analysis of features to classify a fine collection of artworks.

40, TITLE: A Survey of Deep Learning Techniques for Weed Detection from Images
AUTHORS: A S M Mahmudul Hasan ; Ferdous Sohel ; Dean Diepeveen ; Hamid Laga ; Michael G. K. Jones
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: In this paper, we review existing deep learning-based weed detection and classification techniques.

41, TITLE: A Pose-only Solution to Visual Reconstruction and Navigation
AUTHORS: Qi Cai ; Lilian Zhang ; Yuanxin Wu ; Wenxian Yu ; Dewen Hu
CATEGORY: cs.CV [cs.CV, cs.RO]
HIGHLIGHT: A Pose-only Solution to Visual Reconstruction and Navigation

42, TITLE: Multiclass Burn Wound Image Classification Using Deep Convolutional Neural Networks
AUTHORS: Behrouz Rostami ; Jeffrey Niezgoda ; Sandeep Gopalakrishnan ; Zeyun Yu
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this study, we use a deep learning-based method to classify burn wound images into two or three different categories based on the wound conditions.

43, TITLE: Part2Whole: Iteratively Enrich Detail for Cross-Modal Retrieval with Partial Query
AUTHORS: GUANYU CAI et. al.
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this work, we introduce the partial-query problem and extensively analyze its influence on text-based image retrieval.

44, TITLE: Few-shot Open-set Recognition By Transformation Consistency
AUTHORS: Minki Jeong ; Seokeon Choi ; Changick Kim
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we attack a few-shot open-set recognition (FSOSR) problem, which is a combination of few-shot learning (FSL) and open-set recognition (OSR).

45, TITLE: TransTailor: Pruning The Pre-trained Model for Improved Transfer Learning
AUTHORS: Bingyan Liu ; Yifeng Cai ; Yao Guo ; Xiangqun Chen
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: To this end, we propose TransTailor, targeting at pruning the pre-trained model for improved transfer learning.

46, TITLE: Fixing Data Augmentation to Improve Adversarial Robustness
AUTHORS: SYLVESTRE-ALVISE REBUFFI et. al.
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: In this paper, we focus on both heuristics-driven and data-driven augmentations as a means to reduce robust overfitting.

47, TITLE: An Interpretable Multiple-Instance Approach for The Detection of Referable Diabetic Retinopathy from Fundus Images
AUTHORS: Alexandros Papadopoulos ; Fotis Topouzis ; Anastasios Delopoulos
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we propose a machine learning system for the detection of referable DR in fundus images that is based on the paradigm of multiple-instance learning.

48, TITLE: Scalable Scene Flow from Point Clouds in The Real World
AUTHORS: Philipp Jund ; Chris Sweeney ; Nichola Abdo ; Zhifeng Chen ; Jonathon Shlens
CATEGORY: cs.CV [cs.CV, cs.LG]
HIGHLIGHT: In this work, we introduce a new large scale benchmark for scene flow based on the Waymo Open Dataset.

49, TITLE: Exploring The High Dimensional Geometry of HSI Features
AUTHORS: Wojciech Czaja ; Ilya Kavalerov ; Weilin Li
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: We explore feature space geometries induced by the 3-D Fourier scattering transform and deep neural network with extended attribute profiles on four standard hyperspectral images.

50, TITLE: Real Masks and Fake Faces: On The Masked Face Presentation Attack Detection
AUTHORS: Meiling Fang ; Naser Damer ; Florian Kirchbuchner ; Arjan Kuijper
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: Therefore, we present novel attacks with real masks placed on presentations and attacks with subjects wearing masks to reflect the current real-world situation.

51, TITLE: Coarse-Fine Networks for Temporal Activity Detection in Videos
AUTHORS: Kumara Kahatapitiya ; Michael S. Ryoo
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we introduce 'Coarse-Fine Networks', a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion.

52, TITLE: Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation
AUTHORS: Yukun Su ; Ruizhou Sun ; Guosheng Lin ; Qingyao Wu
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information.

53, TITLE: Predicting Video with VQVAE
AUTHORS: Jacob Walker ; Ali Razavi ; A�ron van den Oord
CATEGORY: cs.CV [cs.CV, cs.LG, I.2.6; I.2.10]
HIGHLIGHT: In this paper we propose a novel approach to this problem with Vector Quantized Variational AutoEncoders (VQ-VAE).

54, TITLE: Unmasking Face Embeddings By Self-restrained Triplet Loss for Accurate Masked Face Recognition
AUTHORS: Fadi Boutros ; Naser Damer ; Florian Kirchbuchner ; Arjan Kuijper
CATEGORY: cs.CV [cs.CV]
HIGHLIGHT: In this paper, we presented a solution to improve the masked face recognition performance.

55, TITLE: Transportation Density Reduction Caused By City Lockdowns Across The World During The COVID-19 Epidemic: From The View of High-resolution Remote Sensing Imagery
AUTHORS: CHEN WU et. al.
CATEGORY: cs.CV [cs.CV, eess.IV]
HIGHLIGHT: A novel vehicle detection model combining unsupervised vehicle candidate extraction and deep learning identification was specifically proposed for the images with the resolution of 0.5m.

56, TITLE: Mixture of Volumetric Primitives for Efficient Neural Rendering
AUTHORS: STEPHEN LOMBARDI et. al.
CATEGORY: cs.GR [cs.GR, cs.CV]
HIGHLIGHT: We present Mixture of Volumetric Primitives (MVP), a representation for rendering dynamic 3D content that combines the completeness of volumetric representations with the efficiency of primitive-based rendering, e.g., point-based or mesh-based methods.

57, TITLE: SME: ReRAM-based Sparse-Multiplication-Engine to Squeeze-Out Bit Sparsity of Neural Network
AUTHORS: FANGXIN LIU et. al.
CATEGORY: cs.AR [cs.AR, cs.CV, cs.LG]
HIGHLIGHT: As the countermeasure, we developed a novel ReRAM-based DNN accelerator, named Sparse-Multiplication-Engine (SME), based on a hardware and software co-design framework.

58, TITLE: Performance Variability in Zero-Shot Classification
AUTHORS: Mat�as Molina ; Jorge S�nchez
CATEGORY: cs.LG [cs.LG, cs.CV]
HIGHLIGHT: In this work we show experimentally that ZSC performance exhibits strong variability under changing training setups.

59, TITLE: A Survey On Universal Adversarial Attack
AUTHORS: CHAONING ZHANG et. al.
CATEGORY: cs.LG [cs.LG, cs.CV]
HIGHLIGHT: With the focus on UAP against deep classifiers, this survey summarizes the recent progress on universal adversarial attacks, discussing the challenges from both the attack and defense sides, as well as the reason for the existence of UAP.

60, TITLE: Learning with Hyperspherical Uniformity
AUTHORS: WEIYANG LIU et. al.
CATEGORY: cs.LG [cs.LG, cs.CV]
HIGHLIGHT: We consider several geometrically distinct ways to achieve hyperspherical uniformity.

61, TITLE: A HINT from Arithmetic: On Systematic Generalization of Perception, Syntax, and Semantics
AUTHORS: QING LI et. al.
CATEGORY: cs.LG [cs.LG, cs.AI, cs.CV]
HIGHLIGHT: Inspired by humans' remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines' capability of learning generalizable concepts at three different levels: perception, syntax, and semantics.

62, TITLE: Adversarial Examples for Unsupervised Machine Learning Models
AUTHORS: Chia-Yi Hsu ; Pin-Yu Chen ; Songtao Lu ; Sijia Lu ; Chia-Mu Yu
CATEGORY: cs.LG [cs.LG, cs.CV]
HIGHLIGHT: In this paper, we propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.

63, TITLE: Avoiding Degeneracy for Monocular Visual SLAM with Point and Line Features
AUTHORS: Hyunjun Lim ; Yeeun Kim ; Kwangik Jung ; Sumin Hu ; Hyun Myung
CATEGORY: cs.RO [cs.RO, cs.CV]
HIGHLIGHT: In this paper, a degeneracy avoidance method for a point and line based visual SLAM algorithm is proposed.

64, TITLE: Geometry-Based Grasping of Vine Tomatoes
AUTHORS: Taeke de Haan ; Padmaja Kulkarni ; Robert Babuska
CATEGORY: cs.RO [cs.RO, cs.CV]
HIGHLIGHT: We propose a geometry-based grasping method for vine tomatoes.

65, TITLE: Test Automation with Grad-CAM Heatmaps -- A Future Pipe Segment in MLOps for Vision AI?
AUTHORS: MARKUS BORG et. al.
CATEGORY: cs.SE [cs.SE, cs.CV]
HIGHLIGHT: In this paper, we demonstrate how Grad-CAM heatmaps can be used to increase the explainability of an image recognition model trained for a pedestrian underpass.

66, TITLE: Solving Inverse Problems By Joint Posterior Maximization with Autoencoding Prior
AUTHORS: Mario Gonz�lez ; Andr�s Almansa ; Pauline Tan
CATEGORY: stat.ML [stat.ML, cs.CV, cs.LG, eess.IV, math.OC]
HIGHLIGHT: In this work we address the problem of solving ill-posed inverse problems in imaging where the prior is a variational autoencoder (VAE).

67, TITLE: Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in Their Interpretations
AUTHORS: Neil Jethani ; Mukund Sudarshan ; Yindalon Aphinyanaphongs ; Rajesh Ranganath
CATEGORY: stat.ML [stat.ML, cs.AI, cs.CV, cs.LG]
HIGHLIGHT: We introduce EVAL-X as a method to quantitatively evaluate interpretations and REAL-X as an amortized explanation method, which learn a predictor model that approximates the true data generating distribution given any subset of the input.

68, TITLE: Super-resolving Compressed Images Via Parallel and Series Integration of Artifact Reduction and Resolution Enhancement
AUTHORS: Hongming Luo ; Fei Zhou ; Guangsen Liao ; Guoping Qiu
CATEGORY: eess.IV [eess.IV, cs.CV]
HIGHLIGHT: In this paper, we propose a novel compressed image super resolution (CISR) framework based on parallel and series integration of artifact removal and resolution enhancement.

69, TITLE: Robust 3D U-Net Segmentation of Macular Holes
AUTHORS: JONATHAN FRAWLEY et. al.
CATEGORY: eess.IV [eess.IV, cs.CV, cs.LG]
HIGHLIGHT: We use the 3D U-Net architecture as a basis and experiment with a number of design variants.

70, TITLE: Efficient Deep Image Denoising Via Class Specific Convolution
AUTHORS: LU XU et. al.
CATEGORY: eess.IV [eess.IV, cs.CV]
HIGHLIGHT: In this paper, we propose an efficient deep neural network for image denoising based on pixel-wise classification.

71, TITLE: Medical Imaging and Machine Learning
AUTHORS: Rohan Shad ; John P. Cunningham ; Euan A. Ashley ; Curtis P. Langlotz ; William Hiesinger
CATEGORY: eess.IV [eess.IV, cs.CV, cs.LG]
HIGHLIGHT: In this perspective paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations in developing high-dimensional, multi-modality, machine learning systems for clinical decision support.

72, TITLE: Feature-Align Network and Knowledge Distillation for Efficient Denoising
AUTHORS: LUCAS D. YOUNG et. al.
CATEGORY: eess.IV [eess.IV, cs.CV, cs.LG, 94A08 (Primary) 68T07, 65D19 (Secondary), I.4.5; I.2.6]
HIGHLIGHT: Here, we propose a novel network for efficient RAW denoising on mobile devices.

73, TITLE: A Practical Framework for ROI Detection in Medical Images -- A Case Study for Hip Detection in Anteroposterior Pelvic Radiographs
AUTHORS: Feng-Yu Liu ; Chih-Chi Chen ; Shann-Ching Chen ; Chien-Hung Liao
CATEGORY: eess.IV [eess.IV, cs.CV]
HIGHLIGHT: Thus, we proposed a practical framework of ROIs detection in medical images, with a case study for hip detection in anteroposterior (AP) pelvic radiographs.

74, TITLE: MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing
AUTHORS: Zhengjue Wang ; Hao Zhang ; Ziheng Cheng ; Bo Chen ; Xin Yuan
CATEGORY: eess.IV [eess.IV, cs.CV]
HIGHLIGHT: We address these challenges by developing a Meta Modulated Convolutional Network for SCI reconstruction, dubbed MetaSCI.

SophiaCV CSDN认证博客专家 AI专家 中科院学霸 博客专家
微信搜索【计算机视觉联盟】,回复关键字【西瓜书手推笔记】获得Github标星2000+的机器学习笔记PDF版本。我的微信:PursueWin 一起进步学习
已标记关键词 清除标记
相关推荐
Preface ix Chapter 1 Introduction to Design 1 1.1 The Design Process 2 1.2 Engineering Design versus Engineering Analysis 4 1.3 Conventional versus Optimum Design Process 4 1.4 Optimum Design versus Optimal Control 6 1.5 Basic Terminology and Notation 7 1.5.1 Sets and Points 7 1.5.2 Notation for Constraints 9 1.5.3 Superscripts/Subscripts and Summation Notation 9 1.5.4 Norm/Length of a Vector 11 1.5.5 Functions 11 1.5.6 U.S.-British versus SI Units 12 Chapter 2 Optimum Design Problem Formulation 15 2.1 The Problem Formulation Process 16 2.1.1 Step 1: Project/Problem Statement 16 2.1.2 Step 2: Data and Information Collection 16 2.1.3 Step 3: Identification/Definition of Design Variables 16 2.1.4 Step 4: Identification of a Criterion to Be Optimized 17 2.1.5 Step 5: Identification of Constraints 17 2.2 Design of a Can 18 2.3 Insulated Spherical Tank Design 20 2.4 Saw Mill Operation 22 2.5 Design of a Two-Bar Bracket 24 2.6 Design of a Cabinet 30 2.6.1 Formulation 1 for Cabinet Design 30 2.6.2 Formulation 2 for Cabinet Design 31 2.6.3 Formulation 3 for Cabinet Design 31 xi 2.7 Minimum Weight Tubular Column Design 32 2.7.1 Formulation 1 for Column Design 33 2.7.2 Formulation 2 for Column Design 34 2.8 Minimum Cost Cylindrical Tank Design 35 2.9 Design of Coil Springs 36 2.10 Minimum Weight Design of a Symmetric Three-Bar Truss 38 2.11 A General Mathematical Model for Optimum Design 41 2.11.1 Standard Design Optimization Model 42 2.11.2 Maximization Problem Treatment 43 2.11.3 Treatment of “Greater Than Type” Constraints 43 2.11.4 Discrete and Integer Design Variables 44 2.11.5 Feasible Set 45 2.11.6 Active/Inactive/Violated Constraints 45 Exercises for Chapter 2 46 Chapter 3 Graphical Optimization 55 3.1 Graphical Solution Process 55 3.1.1 Profit Maximization Problem 55 3.1.2 Step-by-Step Graphical Solution Procedure 56 3.2 Use of Mathematica for Graphical Optimization 60 3.2.1 Plotting Functions 61 3.2.2 Identification and Hatching of Infeasible Region for an Inequality 62 3.2.3 Identification of Feasible Region 62 3.2.4 Plotting of Objective Function Contours 63 3.2.5 Identification of Optimum Solution 63 3.3 Use of MATLAB for Graphical Optimization 64 3.3.1 Plotting of Function Contours 64 3.3.2 Editing of Graph 64 3.4 Design Problem with Multiple Solutions 66 3.5 Problem with Unbounded Solution 66 3.6 Infeasible Problem 67 3.7 Graphical Solution for Minimum Weight Tubular Column 69 3.8 Graphical Solution for a Beam Design Problem 69 Exercises for Chapter 3 72 Chapter 4 Optimum Design Concepts 83 4.1 Definitions of Global and Local Minima 84 4.1.1 Minimum 84 4.1.2 Existence of Minimum 89 4.2 Review of Some Basic Calculus Concepts 89 4.2.1 Gradient Vector 90 4.2.2 Hessian Matrix 92 4.2.3 Taylor’s Expansion 93 4.2.4 Quadratic Forms and Definite Matrices 96 4.2.5 Concept of Necessary and Sufficient Conditions 102 xii Contents 4.3 Unconstrained Optimum Design Problems 103 4.3.1 Concepts Related to Optimality Conditions 103 4.3.2 Optimality Conditions for Functions of Single Variable 104 4.3.3 Optimality Conditions for Functions of Several Variables 109 4.3.4 Roots of Nonlinear Equations Using Excel 116 4.4 Constrained Optimum Design Problems 119 4.4.1 Role of Constraints 119 4.4.2 Necessary Conditions: Equality Constraints 121 4.4.3 Necessary Conditions: Inequality Constraints— Karush-Kuhn-Tucker (KKT) Conditions 128 4.4.4 Solution of KKT Conditions Using Excel 140 4.4.5 Solution of KKT Conditions Using MATLAB 141 4.5 Postoptimality Analysis: Physical Meaning of Lagrange Multipliers 143 4.5.1 Effect of Changing Constraint Limits 143 4.5.2 Effect of Cost Function Scaling on Lagrange Multipliers 146 4.5.3 Effect of Scaling a Constraint on Its Lagrange Multiplier 147 4.5.4 Generalization of Constraint Variation Sensitivity Result 148 4.6 Global Optimality 149 4.6.1 Convex Sets 149 4.6.2 Convex Functions 151 4.6.3 Convex Programming Problem 153 4.6.4 Transformation of a Constraint 156 4.6.5 Sufficient Conditions for Convex Programming Problems 157 4.7 Engineering Design Examples 158 4.7.1 Design of a Wall Bracket 158 4.7.2 Design of a Rectangular Beam 162 Exercises for Chapter 4 166 Chapter 5 More on Optimum Design Concepts 175 5.1 Alternate Form of KKT Necessary Conditions 175 5.2 Irregular Points 178 5.3 Second-Order Conditions for Constrained Optimization 179 5.4 Sufficiency Check for Rectangular Beam Design Problem 184 Exercises for Chapter 5 185 Chapter 6 Linear Programming Methods for Optimum Design 191 6.1 Definition of a Standard Linear Programming Problem 192 6.1.1 Linear Constraints 192 6.1.2 Unrestricted Variables 193 6.1.3 Standard LP Definition 193 Contents xiii 6.2 Basic Concepts Related to Linear Programming Problems 195 6.2.1 Basic Concepts 195 6.2.2 LP Terminology 198 6.2.3 Optimum Solution for LP Problems 201 6.3 Basic Ideas and Steps of the Simplex Method 201 6.3.1 The Simplex 202 6.3.2 Canonical Form/General Solution of Ax = b 202 6.3.3 Tableau 203 6.3.4 The Pivot Step 205 6.3.5 Basic Steps of the Simplex Method 206 6.3.6 Simplex Algorithm 211 6.4 Two-Phase Simplex Method—Artificial Variables 218 6.4.1 Artificial Variables 219 6.4.2 Artificial Cost Function 219 6.4.3 Definition of Phase I Problem 220 6.4.4 Phase I Algorithm 220 6.4.5 Phase II Algorithm 221 6.4.6 Degenerate Basic Feasible Solution 226 6.5 Postoptimality Analysis 228 6.5.1 Changes in Resource Limits 229 6.5.2 Ranging Right Side Parameters 235 6.5.3 Ranging Cost Coefficients 239 6.5.4 Changes in the Coefficient Matrix 241 6.6 Solution of LP Problems Using Excel Solver 243 Exercises for Chapter 6 246 Chapter 7 More on Linear Programming Methods for Optimum Design 259 7.1 Derivation of the Simplex Method 259 7.1.1 Selection of a Basic Variable That Should Become Nonbasic 259 7.1.2 Selection of a Nonbasic Variable That Should Become Basic 260 7.2 Alternate Simplex Method 262 7.3 Duality in Linear Programming 263 7.3.1 Standard Primal LP 263 7.3.2 Dual LP Problem 264 7.3.3 Treatment of Equality Constraints 265 7.3.4 Alternate Treatment of Equality Constraints 266 7.3.5 Determination of Primal Solution from Dual Solution 267 7.3.6 Use of Dual Tableau to Recover Primal Solution 271 7.3.7 Dual Variables as Lagrange Multipliers 273 Exercises for Chapter 7 275 Chapter 8 Numerical Methods for Unconstrained Optimum Design 277 8.1 General Concepts Related to Numerical Algorithms 278 8.1.1 A General Algorithm 279 8.1.2 Descent Direction and Descent Step 280 xiv Contents 8.1.3 Convergence of Algorithms 282 8.1.4 Rate of Convergence 282 8.2 Basic Ideas and Algorithms for Step Size Determination 282 8.2.1 Definition of One-Dimensional Minimization Subproblem 282 8.2.2 Analytical Method to Compute Step Size 283 8.2.3 Concepts Related to Numerical Methods to Compute Step Size 285 8.2.4 Equal Interval Search 286 8.2.5 Alternate Equal Interval Search 288 8.2.6 Golden Section Search 289 8.3 Search Direction Determination: Steepest Descent Method 293 8.4 Search Direction Determination: Conjugate Gradient Method 296 Exercises for Chapter 8 300 Chapter 9 More on Numerical Methods for Unconstrained Optimum Design 305 9.1 More on Step Size Determination 305 9.1.1 Polynomial Interpolation 306 9.1.2 Inaccurate Line Search 309 9.2 More on Steepest Descent Method 310 9.2.1 Properties of the Gradient Vector 310 9.2.2 Orthogonality of Steepest Descent Directions 314 9.3 Scaling of Design Variables 315 9.4 Search Direction Determination: Newton’s Method 318 9.4.1 Classical Newton’s Method 318 9.4.2 Modified Newton’s Method 319 9.4.3 Marquardt Modification 323 9.5 Search Direction Determination: Quasi-Newton Methods 324 9.5.1 Inverse Hessian Updating: DFP Method 324 9.5.2 Direct Hessian Updating: BFGS Method 327 9.6 Engineering Applications of Unconstrained Methods 329 9.6.1 Minimization of Total Potential Energy 329 9.6.2 Solution of Nonlinear Equations 331 9.7 Solution of Constrained Problems Using Unconstrained Optimization Methods 332 9.7.1 Sequential Unconstrained Minimization Techniques 333 9.7.2 Multiplier (Augmented Lagrangian) Methods 334 Exercises for Chapter 9 335 Chapter 10 Numerical Methods for Constrained Optimum Design 339 10.1 Basic Concepts and Ideas 340 10.1.1 Basic Concepts Related to Algorithms for Constrained Problems 340 10.1.2 Constraint Status at a Design Point 342 10.1.3 Constraint Normalization 343 Contents xv 10.1.4 Descent Function 345 10.1.5 Convergence of an Algorithm 345 10.2 Linearization of Constrained Problem 346 10.3 Sequential Linear Programming Algorithm 352 10.3.1 The Basic Idea—Move Limits 352 10.3.2 An SLP Algorithm 353 10.3.3 SLP Algorithm: Some Observations 357 10.4 Quadratic Programming Subproblem 358 10.4.1 Definition of QP Subproblem 358 10.4.2 Solution of QP Subproblem 361 10.5 Constrained Steepest Descent Method 363 10.5.1 Descent Function 364 10.5.2 Step Size Determination 366 10.5.3 CSD Algorithm 368 10.5.4 CSD Algorithm: Some Observations 368 10.6 Engineering Design Optimization Using Excel Solver 369 Exercises for Chapter 10 373 Chapter 11 More on Numerical Methods for Constrained Optimum Design 379 11.1 Potential Constraint Strategy 379 11.2 Quadratic Programming Problem 383 11.2.1 Definition of QP Problem 383 11.2.2 KKT Necessary Conditions for the QP Problem 384 11.2.3 Transformation of KKT Conditions 384 11.2.4 Simplex Method for Solving QP Problem 385 11.3 Approximate Step Size Determination 388 11.3.1 The Basic Idea 388 11.3.2 Descent Condition 389 11.3.3 CSD Algorithm with Approximate Step Size 393 11.4 Constrained Quasi-Newton Methods 400 11.4.1 Derivation of Quadratic Programming Subproblem 400 11.4.2 Quasi-Newton Hessian Approximation 403 11.4.3 Modified Constrained Steepest Descent Algorithm 404 11.4.4 Observations on the Constrained Quasi-Newton Methods 406 11.4.5 Descent Functions 406 11.5 Other Numerical Optimization Methods 407 11.5.1 Method of Feasible Directions 407 11.5.2 Gradient Projection Method 409 11.5.3 Generalized Reduced Gradient Method 410 Exercises for Chapter 11 411 Chapter 12 Introduction to Optimum Design with MATLAB 413 12.1 Introduction to Optimization Toolbox 413 12.1.1 Variables and Expressions 413 xvi Contents 12.1.2 Scalar, Array, and Matrix Operations 414 12.1.3 Optimization Toolbox 414 12.2 Unconstrained Optimum Design Problems 415 12.3 Constrained Optimum Design Problems 418 12.4 Optimum Design Examples with MATLAB 420 12.4.1 Location of Maximum Shear Stress for Two Spherical Bodies in Contact 420 12.4.2 Column Design for Minimum Mass 421 12.4.3 Flywheel Design for Minimum Mass 425 Exercises for Chapter 12 429 Chapter 13 Interactive Design Optimization 433 13.1 Role of Interaction in Design Optimization 434 13.1.1 What Is Interactive Design Optimization? 434 13.1.2 Role of Computers in Interactive Design Optimization 434 13.1.3 Why Interactive Design Optimization? 435 13.2 Interactive Design Optimization Algorithms 436 13.2.1 Cost Reduction Algorithm 436 13.2.2 Constraint Correction Algorithm 440 13.2.3 Algorithm for Constraint Correction at Constant Cost 442 13.2.4 Algorithm for Constraint Correction at Specified Increase in Cost 445 13.2.5 Constraint Correction with Minimum Increase in Cost 446 13.2.6 Observations on Interactive Algorithms 447 13.3 Desired Interactive Capabilities 448 13.3.1 Interactive Data Preparation 448 13.3.2 Interactive Capabilities 448 13.3.3 Interactive Decision Making 449 13.3.4 Interactive Graphics 450 13.4 Interactive Design Optimization Software 450 13.4.1 User Interface for IDESIGN 451 13.4.2 Capabilities of IDESIGN 453 13.5 Examples of Interactive Design Optimization 454 13.5.1 Formulation of Spring Design Problem 454 13.5.2 Optimum Solution for the Spring Design Problem 455 13.5.3 Interactive Solution for Spring Design Problem 455 13.5.4 Use of Interactive Graphics 457 Exercises for Chapter 13 462 Chapter 14 Design Optimization Applications with Implicit Functions 465 14.1 Formulation of Practical Design Optimization Problems 466 14.1.1 General Guidelines 466 14.1.2 Example of a Practical Design Optimization Problem 467 Contents xvii 14.2 Gradient Evaluation for Implicit Functions 473 14.3 Issues in Practical Design Optimization 478 14.3.1 Selection of an Algorithm 478 14.3.2 Attributes of a Good Optimization Algorithm 478 14.4 Use of General-Purpose Software 479 14.4.1 Software Selection 480 14.4.2 Integration of an Application into General- Purpose Software 480 14.5 Optimum Design of Two-Member Frame with Out-of-Plane Loads 481 14.6 Optimum Design of a Three-Bar Structure for Multiple Performance Requirements 483 14.6.1 Symmetric Three-Bar Structure 483 14.6.2 Asymmetric Three-Bar Structure 484 14.6.3 Comparison of Solutions 490 14.7 Discrete Variable Optimum Design 491 14.7.1 Continuous Variable Optimization 492 14.7.2 Discrete Variable Optimization 492 14.8 Optimal Control of Systems by Nonlinear Programming 493 14.8.1 A Prototype Optimal Control Problem 493 14.8.2 Minimization of Error in State Variable 497 14.8.3 Minimum Control Effort Problem 503 14.8.4 Minimum Time Control Problem 505 14.8.5 Comparison of Three Formulations for Optimal Control of System Motion 508 Exercises for Chapter 14 508 Chapter 15 Discrete Variable Optimum Design Concepts and Methods 513 15.1 Basic Concepts and Definitions 514 15.1.1 Definition of Mixed Variable Optimum Design Problem: MV-OPT 514 15.1.2 Classification of Mixed Variable Optimum Design Problems 514 15.1.3 Overview of Solution Concepts 515 15.2 Branch and Bound Methods (BBM) 516 15.2.1 Basic BBM 517 15.2.2 BBM with Local Minimization 519 15.2.3 BBM for General MV-OPT 520 15.3 Integer Programming 521 15.4 Sequential Linearization Methods 522 15.5 Simulated Annealing 522 15.6 Dynamic Rounding-off Method 524 15.7 Neighborhood Search Method 525 15.8 Methods for Linked Discrete Variables 525 15.9 Selection of a Method 526 Exercises for Chapter 15 527 Chapter 16 Genetic Algorithms for Optimum Design 531 16.1 Basic Concepts and Definitions 532 16.2 Fundamentals of Genetic Algorithms 534 xviii Contents 16.3 Genetic Algorithm for Sequencing-Type Problems 538 16.4 Applications 539 Exercises for Chapter 16 540 Chapter 17 Multiobjective Optimum Design Concepts and Methods 543 17.1 Problem Definition 543 17.2 Terminology and Basic Concepts 546 17.2.1 Criterion Space and Design Space 546 17.2.2 Solution Concepts 548 17.2.3 Preferences and Utility Functions 551 17.2.4 Vector Methods and Scalarization Methods 551 17.2.5 Generation of Pareto Optimal Set 551 17.2.6 Normalization of Objective Functions 552 17.2.7 Optimization Engine 552 17.3 Multiobjective Genetic Algorithms 552 17.4 Weighted Sum Method 555 17.5 Weighted Min-Max Method 556 17.6 Weighted Global Criterion Method 556 17.7 Lexicographic Method 558 17.8 Bounded Objective Function Method 558 17.9 Goal Programming 559 17.10 Selection of Methods 559 Exercises for Chapter 17 560 Chapter 18 Global Optimization Concepts and Methods for Optimum Design 565 18.1 Basic Concepts of Solution Methods 565 18.1.1 Basic Concepts 565 18.1.2 Overview of Methods 567 18.2 Overview of Deterministic Methods 567 18.2.1 Covering Methods 568 18.2.2 Zooming Method 568 18.2.3 Methods of Generalized Descent 569 18.2.4 Tunneling Method 571 18.3 Overview of Stochastic Methods 572 18.3.1 Pure Random Search 573 18.3.2 Multistart Method 573 18.3.3 Clustering Methods 573 18.3.4 Controlled Random Search 575 18.3.5 Acceptance-Rejection Methods 578 18.3.6 Stochastic Integration 579 18.4 Two Local-Global Stochastic Methods 579 18.4.1 A Conceptual Local-Global Algorithm 579 18.4.2 Domain Elimination Method 580 18.4.3 Stochastic Zooming Method 582 18.4.4 Operations Analysis of the Methods 583 18.5 Numerical Performance of Methods 585 18.5.1 Summary of Features of Methods 585 18.5.2 Performance of Some Methods Using Unconstrained Problems 586 Contents xix 18.5.3 Performance of Stochastic Zooming and Domain Elimination Methods 586 18.5.4 Global Optimization of Structural Design Problems 587 Exercises for Chapter 18 588 Appendix A Economic Analysis 593 A.1 Time Value of Money 593 A.1.1 Cash Flow Diagrams 594 A.1.2 Basic Economic Formulas 594 A.2 Economic Bases for Comparison 598 A.2.1 Annual Base Comparisons 599 A.2.2 Present Worth Comparisons 601 Exercises for Appendix A 604 Appendix B Vector and Matrix Algebra 611 B.1 Definition of Matrices 611 B.2 Type of Matrices and Their Operations 613 B.2.1 Null Matrix 613 B.2.2 Vector 613 B.2.3 Addition of Matrices 613 B.2.4 Multiplication of Matrices 613 B.2.5 Transpose of a Matrix 615 B.2.6 Elementary Row–Column Operations 616 B.2.7 Equivalence of Matrices 616 B.2.8 Scalar Product–Dot Product of Vectors 616 B.2.9 Square Matrices 616 B.2.10 Partitioning of Matrices 617 B.3 Solution of n Linear Equations in n Unknowns 618 B.3.1 Linear Systems 618 B.3.2 Determinants 619 B.3.3 Gaussian Elimination Procedure 621 B.3.4 Inverse of a Matrix: Gauss-Jordan Elimination 625 B.4 Solution of m Linear Equations in n Unknowns 628 B.4.1 Rank of a Matrix 628 B.4.2 General Solution of m ¥ n Linear Equations 629 B.5 Concepts Related to a Set of Vectors 635 B.5.1 Linear Independence of a Set of Vectors 635 B.5.2 Vector Spaces 639 B.6 Eigenvalues and Eigenvectors 642 B.7 Norm and Condition Number of a Matrix 643 B.7.1 Norm of Vectors and Matrices 643 B.7.2 Condition Number of a Matrix 644 Exercises for Appendix B 645 Appendix C A Numerical Method for Solution of Nonlinear Equations 647 C.1 Single Nonlinear Equation 647 C.2 Multiple Nonlinear Equations 650 Exercises for Appendix C 655 xx Contents Appendix D Sample Computer Programs 657 D.1 Equal Interval Search 657 D.2 Golden Section Search 660 D.3 Steepest Descent Method 660 D.4 Modified Newton’s Method 669 References 675 Bibliography 683 Answers to Selected Problems 687 Index 695 Contents
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值