正则化参数λ的选择
正则化参数λ的选择:通过选择不同的λ,求出不同λ对应的最小化J(θ),取出向量θ,使用交叉验证集来评价,也即测出每个参数θ在交叉验证集上的平均的误差平方和,然后取12个模型中交叉验证集最小的哪个模型作为最终选择。
- 图片选自吴恩达机器学习视频。
只有训练集的损失函数有正则化项,验证集和训练集均没有。
正则化参数λ的选择:通过选择不同的λ,求出不同λ对应的最小化J(θ),取出向量θ,使用交叉验证集来评价,也即测出每个参数θ在交叉验证集上的平均的误差平方和,然后取12个模型中交叉验证集最小的哪个模型作为最终选择。
只有训练集的损失函数有正则化项,验证集和训练集均没有。