参数估计之 最大似然估计法

1. 最大似然估计定义

  • 引例1

    已知一个箱子里有黑白共100个球,颜色且比例为99:1,从中随机取一个球,发现是黑色,问箱子里有多少个黑球?

    ​ 解,设事件 A A A表示取到黑球,事件 B B B表示取到白球,已知100个球中,颜色比例为 99 : 1 99:1 99:1,如果假设黑球有99个,则 P ( A ) = 0.99 P(A)=0.99 P(A)=0.99 如果假设黑球有 1 1 1个,则 P ( A ) = 0.01 P(A) = 0.01 P(A)=0.01, 现在我们随机取了一个球,是黑色,即事件 A A A发生,我们很直观的认为箱子中黑球应该有99个,因为有一个事实是,概率大的事件比概率小的时间更容易发生。或者说,箱子里更像是有99个黑球,这个更像就是“最大似然“的思想。

    ​ 极大似然原理的直观想法是,一个随机试验如果有若干个可能的结果 A , B , C , ⋯   . A,B,C,\cdots. A,B,C,. 如果在一次试验中,结果 A A A出现,则一般认为 A A A出现的概率最大,或者说在试验的很多可能条件中,认为应该是使事件 A A A发生的概率最大的条件

  • 数学定义(建议跳过阅读,通过例子更好理解)

    • 若总体 X X X属于离散型,其分布律 P { X = x } = p ( x ; θ ) , θ ∈ Θ P\{X=x\}=p(x;\theta),\theta \in \Theta P{X=x}=p(x;θ),θΘ的形式已知, θ \theta θ为待估参数, Θ \Theta Θ θ \theta θ可能的取值范围。设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自 X X X的样本,则 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的联合分布律为 ∏ i = 1 n p ( x i ; θ ) \prod\limits_{i=1}^np(x_i;\theta) i=1np(xi;θ) ,又设 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是相应于样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的一个样本值,很容易知道,样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn取到观测值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的概率,即事件 { X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n } \{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\} {X1=x1,X2=x2,,Xn=xn} 发生的概率为 L ( θ ) = L ( x 1 , x 2 , ⋯   , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,\cdots,x_n;\theta)=\prod\limits_{i=1}^np(x_i;\theta),\theta \in \Theta L(θ)=L(x1,x2,,xn;θ)=i=1np(xi;θ),θΘ这一概率随 θ \theta θ的取值而变化,它是 θ \theta θ的函数, L ( θ ) L(\theta) L(θ)称为样本的似然函数
    • 若总体 X X X属于连续型,其概率密度 f ( x ; θ ) , θ ∈ Θ f(x;\theta),\theta \in \Theta f(x;θ),θΘ的形式已知, θ \theta θ为待估参数, Θ \Theta Θ θ \theta θ可能的取值范围。设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自 X X X的样本,则 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的联合分布律为 ∏ i = 1 n f ( x i ; θ ) \prod\limits_{i=1}^nf(x_i;\theta) i=1nf(xi;θ) ,又设 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是相应于样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的一个样本值,则随机点 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)落在点 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) x1,x2,,xn)的邻域(边长分别为 d x 1 , d x 2 , ⋯   , d x n dx_1,dx_2,\cdots,dx_n dx1,dx2,,dxn n n n维立方体)内的概率近似地为 ∏ i = 1 n f ( x i ; θ ) d x i \prod\limits_{i=1}^nf(x_i;\theta)dx_i i=1nf(xi;θ)dxi 这一概率随 θ \theta θ的取值而变化,与离散型情况一样,我们取 θ \theta θ的估计值 θ ^ \hat{\theta} θ^使概率取得最大值,由于因子 ∏ i = 1 n d x i \prod\limits_{i=1}^ndx_i i=1ndxi不随 θ \theta θ而变,故只需考虑函数 L ( θ ) = L ( x 1 , x 2 , ⋯   , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,\cdots,x_n;\theta)=\prod\limits_{i=1}^nf(x_i;\theta),\theta \in \Theta L(θ)=L(x1,x2,,xn;θ)=i=1nf(xi;θ),θΘ的最大值,这里 L ( θ ) L(\theta) L(θ)称为样本的似然函数
    • L ( θ ) = L ( x 1 , x 2 , ⋯   , x n ; θ ^ ) = max ⁡ θ ∈ Θ ∏ i = 1 n f ( x i ; θ ) L(\theta)=L(x_1,x_2,\cdots,x_n;\hat{\theta})=\max\limits_{\theta \in \Theta} \prod\limits_{i=1}^nf(x_i;\theta) L(θ)=L(x1,x2,,xn;θ^)=θΘmaxi=1nf(xi;θ) 则称 θ ^ ( x 1 , x 2 , ⋯   , x n ) \hat{\theta}(x_1,x_2,\cdots,x_n) θ^(x1,x2,,xn) θ \theta θ最大似然估计值,称 θ ^ ( X 1 , X 2 , ⋯   , X n ) \hat{\theta}(X_1,X_2,\cdots,X_n) θ^(X1,X2,,Xn) θ \theta θ最大似然估计量
    • 很多情况下, p ( x ; θ ) p(x;\theta) p(x;θ) f ( x ; θ ) f(x;\theta) f(x;θ)关于 θ \theta θ可微,这时 θ ^ \hat{\theta} θ^常从方程 d d θ L ( θ ) = 0 \frac{d}{d\theta}L(\theta)=0 dθdL(θ)=0 解得。由于 l n x lnx lnx为增函数,因此 L ( θ ) L(\theta) L(θ) l n L ( θ ) lnL(\theta) lnL(θ)在同一个 θ \theta θ处取到极值,因此 θ \theta θ的最大似然估计可以从方程 d d θ l n L ( θ ) = 0 \frac{d}{d\theta}lnL(\theta)=0 dθdlnL(θ)=0 求得,该方程被称为对数似然方程

2. 解最大似然估计值

最大似然估计的计算步骤很简单,用例子加以解释和说明

  • 例1

    总体 X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ) x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是来自总体的一个样本值,试求 λ \lambda λ的最大似然估计

    解:

    1. 写出总体的分布律或者密度函数

      P { X = k } = λ k k ! e − λ P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda} P{X=k}=k!λkeλ

    2. 写出似然函数

      L ( λ ) = ∏ k = 1 n λ x k x k ! e − λ L(\lambda) = \prod\limits_{k=1}^n\frac{\lambda^{x_k}}{x_k!}e^{-\lambda} L(λ)=k=1nxk!λxkeλ

    3. 两边同时取 l n ln ln

      l n L ( λ ) = l n ∏ k = 1 n λ x k x k ! e − λ = ∑ k = 1 n l n λ x k + ∑ k = 1 n l n 1 x k ! + ∑ k = 1 n l n e − λ = l n λ ∑ k = 1 n x k − ∑ k = 1 n l n x k ! − n λ \begin{aligned} lnL(\lambda) &= ln\prod\limits_{k=1}^n\frac{\lambda^{x_k}}{x_k!}e^{-\lambda} \\&= \sum\limits_{k=1}^nln\lambda^{x_k}+\sum\limits_{k=1}^nln\frac{1}{x_k!}+\sum\limits_{k=1}^nlne^{-\lambda} \\&= ln\lambda\sum\limits_{k=1}^nx_k - \sum\limits_{k=1}^nln{x_k!} -n\lambda \end{aligned} lnL(λ)=lnk=1nxk!λxkeλ=k=1nlnλxk+k=1nlnxk!1+k=1nlneλ=lnλk=1nxkk=1nlnxk!nλ

    4. 写出对数似然方程

      d d λ l n L ( λ ) = 1 λ ∑ k = 1 n x k − n = 0 \begin{aligned}\frac{d}{d\lambda}lnL(\lambda)= \frac{1}{\lambda}\sum\limits_{k=1}^nx_k -n = 0 \end{aligned} dλdlnL(λ)=λ1k=1nxkn=0

    5. 解出参数值

      λ = 1 n ∑ k = 1 n x k = X ‾ \lambda = \frac{1}{n}\sum\limits_{k=1}^nx_k = \overline{X} λ=n1k=1nxk=X

    该估计值和矩估计的值保持一致

  • 例2

    总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是来自总体的一个样本值,试求 μ , σ 2 \mu,\sigma^2 μ,σ2的最大似然估计

    解:

    1. 写出总体的分布律或者密度函数

      f ( x ; μ , σ 2 ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x;μ,σ2)=2π σ1e2σ2(xμ)2

    2. 写出似然函数

      L ( μ , σ 2 ) = ∏ k = 1 n 1 2 π σ e − ( x k − μ ) 2 2 σ 2 L(\mu,\sigma^2) = \prod\limits_{k=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_k-\mu)^2}{2\sigma^2}} L(μ,σ2)=k=1n2π σ1e2σ2(xkμ)2

    3. 两边同时取 l n ln ln

      l n L ( μ , σ 2 ) = l n ∏ k = 1 n 1 2 π σ e − ( x k − μ ) 2 2 σ 2 = ∑ k = 1 n l n 1 2 π − 1 2 ∑ k = 1 n l n σ 2 − ∑ k = 1 n ( x k − μ ) 2 2 σ 2 = n l n 1 2 π − n 2 l n σ 2 − ∑ k = 1 n ( x k − μ ) 2 2 σ 2 \begin{aligned} lnL(\mu,\sigma^2) &= ln\prod\limits_{k=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_k-\mu)^2}{2\sigma^2}} \\&= \sum\limits_{k=1}^nln\frac{1}{\sqrt{2\pi}}-\frac{1}{2}\sum\limits_{k=1}^nln{\sigma^2}-\sum\limits_{k=1}^n\frac{(x_k-\mu)^2}{2\sigma^2} \\&= nln\frac{1}{\sqrt{2\pi}} -\frac{n}{2}ln{\sigma^2}-\sum\limits_{k=1}^n\frac{(x_k-\mu)^2}{2\sigma^2} \end{aligned} lnL(μ,σ2)=lnk=1n2π σ1e2σ2(xkμ)2=k=1nln2π 121k=1nlnσ2k=1n2σ2(xkμ)2=nln2π 12nlnσ2k=1n2σ2(xkμ)2

    4. 写出对数似然方程,这里有多个参数,则似然方程组为

      { ∂ l n L ( μ , σ 2 ) ∂ μ = 1 σ 2 ∑ k = 1 n ( x k − μ ) = 0 ∂ l n L ( μ , σ 2 ) ∂ σ 2 = − n 2 σ 2 + ∑ k = 1 n ( x k − μ ) 2 2 σ 4 = 0 \begin{cases}\frac{\partial lnL(\mu,\sigma^2)}{\partial\mu} = \frac{1}{\sigma^2}\sum\limits_{k=1}^n(x_k-\mu) = 0 \\ \frac{\partial lnL(\mu,\sigma^2)}{\partial\sigma^2} = -\frac{n}{2\sigma^2}+\frac{\sum\limits_{k=1}^n(x_k-\mu)^2}{2\sigma^4} = 0 \end{cases} μlnL(μ,σ2)=σ21k=1n(xkμ)=0σ2lnL(μ,σ2)=2σ2n+2σ4k=1n(xkμ)2=0

    5. 解出参数值

      μ = 1 n ∑ k = 1 n x k = X ‾ \mu = \frac{1}{n}\sum\limits_{k=1}^nx_k = \overline{X} μ=n1k=1nxk=X

      σ 2 = 1 n ∑ k = 1 n ( x k − μ ) 2 = X ‾ \sigma^2 = \frac{1}{n}\sum\limits_{k=1}^n(x_k-\mu)^2 = \overline{X} σ2=n1k=1n(xkμ)2=X

    该估计值和矩估计的值保持一致

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步以至千里。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值