如何快速入门机器学习?技术小白也能快速学习并掌握人工智能知识吗?

前言

作为一个白手起家(自学)的机器学习研究者,我在这方面算是经验丰富。在我看来,零基础、免费自学的机器学习的基本分为「动眼」和「动手」两个方面,也就是理论和实践相结合。

先说「动眼」的部分,我们在一开始可以通过阅读一些最新的口碑机器学习课程,并配套相关书籍对领域有大致的了解。在这个部分我介绍的课程和书籍都属于难度非常低的,对数学和编程都没什么太大的要求。

一开始不如先跟着完整的视频课程进行入门。

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈


资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取

在这里插入图片描述

好文推荐

了解python的前景:https://blog.csdn.net/weixin_49895216/article/details/127186741

了解python能做什么:https://blog.csdn.net/weixin_49895216/article/details/127124870

这门课的覆盖范围比较广,从最基础的安装深度学习工具,到现在流行的注意力机制和transformer都有涉及,基本能覆盖从入门到熟练的程度。而且最重要的莫过于动手二字,光听不练假把式。

学习硬件的选择

而随着更多的上手实践活动,我们也得更多的考虑硬件和软件的选择。先说硬件,大部分常见的数据集都可以放到你的家用电脑或者笔记本内存中运行。在入门阶段,我们很少会用到非常大的数据集,一般最大也就是MNIST,完全可以使用个人笔记本电脑进行运行。在Windows笔记本上也可以用GPU进行深度学习,基本上大部分游戏本自带的GPU都足够自学了。如果真的需要跑很大的数据集,很多云服务的开销都已经很低了,比如亚马逊云科技上的很多高端GPU每小时只要不到一块钱人民币。

编程语言的选择

而至于编程语言(软件),我首推Python。主要是因为其良好的拓展支持性,主流的工具包都有Python版本。在特定情况下,选择R作为编程语言也是可以的。其他可能的语言还包括C++、Java和Matlab,但我个人不大推荐。因此无论是硬件和软件,基本上我们都可以实现零成本的入门。而其实对于非计算机专业的同学,也可以接触一些低门槛的AI服务,例如Amazon SageMaker Canvas,不需要代码,就可以完成模型的构建。

而当「动眼」和「动手」这两个基本入门阶段都完成以后,你已经有了相当的机器学习能力。这个阶段,最重要的就是不要贪多嚼不烂。

机器学习、人工智能其实并不神秘,我们大部分人而言其实都是从零基础自学入门的。就像我曾在很多回答中提到,机器学习领域应该要敞开大门,让每个人都可以尝试将机器学习知识应用于他们原本的领域,摒弃人为制造的知识壁垒。唯有这样,机器学习技术才能在更多的不同领域落地,从而反哺机器学习研究本身。而学习的过程本身要做到理论和实践相结合,自学课程和打比赛都是很重要的学习过程。

不说了,小编要去学习去了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值