GCN学习:用PyG实现自定义layers的GCN网络及训练(五)


目前的代码讲解基本都是直接使用PyG内置的包实现固定结构的网络层。虽然我们可以通过每层使用不同的传递方式来建立不同的网络,但是却不能自定义网络层的传递方式,对于做创新性的研究工作而言是一个不足。
本篇在 GCN学习:Pytorch-Geometric教程(二)的基础上,自定义了GCN的层传递方式(仍然是按照论文中的传递方式建立,但是我们以后也可以建立其他传递方式),其他代码与系列(二)的代码相同。

完整代码

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as F

class GCNConv(MessagePassing):
    def __init__(self,in_channels,out_channels):
        super(GCNConv,self).__init__(aggr='add')
        self.lin=torch.nn.Linear(in_channels,out_channels)
    def forward(self,x,edge_index):
        edge_index, _ = add_self_loops(edge_index,num_nodes=x.size(0))
        x=self.lin(x)
        row,col=edge_index
        #计算度矩阵
        deg=degree(col,x.size(0),dtype=x.dtype)
        #度矩阵的-1/2次方
        deg_inv_sqrt=deg.pow(-0.5)
        norm=deg_inv_sqrt[row]*deg_inv_sqrt[col]
        return self.propagate(edge_index,x=x,norm=norm)
    def message(self,x_j,norm):
        return norm.view(-1,1)*x_j



ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
print(dataset)
print(dataset.num_node_features)
print(dataset.num_classes)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = GCNConv(dataset.num_node_features, 16)
        self.conv2 = GCNConv(16, dataset.num_classes)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index

        x = self.conv1(x, edge_index)
        x = F.relu(x)
        x = F.dropout(x, training=self.training)
        x = self.conv2(x, edge_index)
        return F.log_softmax(x, dim=1)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()
for epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()

model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Cora()
1433
7
Accuracy:0.8010

Process finished with exit code 0

自定义layer传播方式

class GCNConv(MessagePassing):
    def __init__(self,in_channels,out_channels):
    	#将邻居节点的特征加和
        super(GCNConv,self).__init__(aggr='add')
        self.lin=torch.nn.Linear(in_channels,out_channels)
    def forward(self,x,edge_index):
    	#x的规模为[N,in_channels]
    	#edge_index为[2,E]
    	#A波浪实际就是在原图上将每一个节点都加入了自环
        edge_index, _ = add_self_loops(edge_index,num_nodes=x.size(0))
        #节点特征矩阵的线性变换
        x=self.lin(x)
        row,col=edge_index
        #计算节点的度
        deg=degree(col,x.size(0),dtype=x.dtype)
        #度的-1/2次方
        deg_inv_sqrt=deg.pow(-0.5)
        norm=deg_inv_sqrt[row]*deg_inv_sqrt[col]
        #进行层传播
        return self.propagate(edge_index,x=x,norm=norm)
    def message(self,x_j,norm):
    	#x_j规模为[E,out_channels]
    	#归一化节点特征
        return norm.view(-1,1)*x_j

从节点角度解读GCN原理

在这里插入图片描述在这里插入图片描述
论文定义的网络传播公式如上。
H和W和特征矩阵和参数矩阵。我们需要构造的为A波浪和D波浪的-1/2次方。
但要理解这部分代码,我们需要牢记的是PyG中直接操作的对象是图,所以我们并不能直接以矩阵形式编写代码,而需要对图节点进行操作进行代码编写。
所以这里我们采用下面的公式,以节点为目标进行传递,图卷积层将每个节点表示为其相邻节点的聚合。下面的公式中的j属于N(i)U{i},N(i)为邻居节点,{i}即相当于添加了自环。

这一个公式转化其实困惑了我一整天,直到第二天看到这篇文章的解释才越来越理解:https://zhuanlan.zhihu.com/p/89503068
在这里插入图片描述在这里插入图片描述
其实从矩阵的角度来理解还不够直观,可以直接从节点的角度来理解,毕竟我们的直接操作对象就是节点:
在这里插入图片描述那么我们的步骤可以拆解为以下5步:
1.增加自连接的邻接矩阵,即邻接矩阵的对角线元素为1,得到 L = D − A L=D-A L=DA;
2.对节点的特征矩阵进行线性变换,将特征变换到维度D,即X*W;
3对节点特征进行规范化, 即乘以归一化的拉普拉斯算子,即前面的归一化;
4.对邻居节点特征进行聚合操作,这里是求和,即矩阵形式公式中的A×X;
5.返回新的节点embedding;

这样我们再回头看代码,就能结合矩阵形式公式理解清楚代码的原理了!

逐行讲解代码原理

init

    def __init__(self,in_channels,out_channels):
        super(GCNConv,self).__init__(aggr='add')
        self.lin=torch.nn.Linear(in_channels,out_channels)

init代码中的self.lin很好理解,就是定义了特征的线性变换函数。但上面的super函数,笔者理解它很费周折。主要费解的地方在于定义了是求和,即求和操作实在何时运行的。

forward

     def forward(self,x,edge_index):
        print('edge_index.size',edge_index.size())
        print('x.size',x.size())
        print('x',x)
        edge_index, _ = add_self_loops(edge_index,num_nodes=x.size(0))
        print('edge_index.size:',edge_index.size())
        x=self.lin(x)
        print('x.size after lin:',x.size())
        row,col=edge_index
        #计算度矩阵
        deg=degree(col,x.size(0),dtype=x.dtype)
        print('deg.size:',deg.size())
        #度矩阵的-1/2次方
        deg_inv_sqrt=deg.pow(-0.5)
        print('deg_inv_sqrt:',deg_inv_sqrt)
        print('deg_inv_sqrt.size:',deg_inv_sqrt.size())
        print('deg_inv_sqrt[row]',deg_inv_sqrt[row])
        print('deg_inv_sqrt[row].size',deg_inv_sqrt[row].size())

        norm=deg_inv_sqrt[row]*deg_inv_sqrt[col]
        print('norm.size:',norm.size())
        return self.propagate(edge_index,x=x,norm=norm)

>>>edge_index.size torch.Size([2, 10556])
x.size torch.Size([2708, 1433])
x tensor([[0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        ...,
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 0.,  ..., 0., 0., 0.]])
edge_index.size: torch.Size([2, 13264])
x.size after lin: torch.Size([2708, 16])
deg.size: torch.Size([2708])
deg_inv_sqrt: tensor([0.5000, 0.5000, 0.4082,  ..., 0.7071, 0.4472, 0.4472])
deg_inv_sqrt.size: torch.Size([2708])
deg_inv_sqrt[row] tensor([0.5000, 0.5000, 0.5000,  ..., 0.7071, 0.4472, 0.4472])
deg_inv_sqrt[row].size torch.Size([13264])
norm.size: torch.Size([13264])

这里加的print代码都是笔者为了更好理解代码运行原理所添加的。相比于直接查看edge_index和x的值,查看其size其实会更直观展现函数效果。forward函数的每一步代码其实比较容易理解。只要记住我们是按照对节点操作的公式来实现的,即下面这个公式:
在这里插入图片描述edge_index, _ = add_self_loop(edge_index,num_nodes=x,size(0))执行完成后,获得了添加了自环后的edge_index。这里代码需要按照上面的格式来写,即在edge_index后加上’, _’,否则会报错。可以看到执行完下面edge_index的规模发生了变化,增加了2708条边,正是顶点的数量。

x=self.lin(x)则很简单,就是把特征进行了线性映射。
deg=degree(col,x.size(0),dtype=x.dtype)就是计算添加了自环后的度矩阵。度矩阵的规模显然是与顶点数量相同的。deg_inv_sqrt=deg.pow(-0.5)计算度矩阵的-1/2次方。但下面的代码比较费解:norm=deg_inv_sqrt[row]*deg_inv_sqrt[col] 其中norm的规模是13264,即所有边的数量。从形式来看,这一步对应于deg(i)的-1/2×deg(j)的-1/2。之前的运算已经得到了的矩阵的-1/2。那么deg_inv_sqrt[row]操作究竟是什么意思呢。从规模来看,deg_inv_sqrt为2708,但deg_inv_sqrt[row]已经变成了13264,注意这里的row并不是索引,而是edge_index,edge_index本身是一个两行矩阵:new_edge_index tensor([[ 0, 0, 0, ..., 2705, 2706, 2707], [ 633, 1862, 2582, ..., 2705, 2706, 2707]])第一行代表边起点节点,二行代表边终点节点。所以这一步的作用实际上相当于将deg_inv_sqrt按照edge_index中的两行进行扩充,按照edge_index中边的起点顺序进行排列,deg_inv_sqrt[row]和deg_inv_sqrt[col]中每项分别代表起点节点和终点节点对应值在deg_inv_sqrt中的索引。所以norm的计算即对应degi的-1/2*degj的-1/2。self.propagate(edge_index,x=x,norm=norm)对上面计算得到的edge_index,x,norm进行传播。

message

    def message(self,x_j,norm):
        print('x_j:',x_j)
        print('x_j.size',x_j.size())
        print('norm',norm)
        print('norm.size',norm.size())
        print('norm.view.size',norm.view(-1,1).size())
        ww=norm.view(-1,1)*x_j
        print('message_result',ww)
        print('message_result.size',ww.size())
        return ww
>>>x_j: tensor([[ 0.0361,  0.0182,  0.0163,  ...,  0.0196, -0.0226, -0.0110],
        [ 0.0361,  0.0182,  0.0163,  ...,  0.0196, -0.0226, -0.0110],
        [ 0.0361,  0.0182,  0.0163,  ...,  0.0196, -0.0226, -0.0110],
        ...,
        [ 0.1105,  0.0317, -0.0821,  ..., -0.0598,  0.0412, -0.0177],
        [ 0.0834, -0.0274, -0.0346,  ..., -0.0309, -0.0100,  0.0086],
        [-0.0859, -0.0149, -0.0071,  ..., -0.0422, -0.0136,  0.0341]],
       grad_fn=<IndexSelectBackward>)
x_j.size torch.Size([13264, 16])
norm tensor([0.2500, 0.2236, 0.2500,  ..., 0.5000, 0.2000, 0.2000])
norm.size torch.Size([13264])
norm.view.size torch.Size([13264, 1])
message_result tensor([[ 0.0090,  0.0045,  0.0041,  ...,  0.0049, -0.0057, -0.0028],
        [ 0.0081,  0.0041,  0.0037,  ...,  0.0044, -0.0051, -0.0025],
        [ 0.0090,  0.0045,  0.0041,  ...,  0.0049, -0.0057, -0.0028],
        ...,
        [ 0.0553,  0.0158, -0.0410,  ..., -0.0299,  0.0206, -0.0088],
        [ 0.0167, -0.0055, -0.0069,  ..., -0.0062, -0.0020,  0.0017],
        [-0.0172, -0.0030, -0.0014,  ..., -0.0084, -0.0027,  0.0068]],
       grad_fn=<MulBackward0>)
message_result.size torch.Size([13264, 16])

x_j实际就是计算公式中所有要计算的顶点,1个i可能对应多个邻居j节点,那么对于这个节点i,我们要计算1+j次。不过在message步中,我们只是将每次正则化计算即下图这部分的结果计算出来,所以共有13264个结果。
在这里插入图片描述
这时候我们再回头看__init__函数部分,我们就可以知道,sum是对message中同个节点i的所有邻居j及自环i的计算结果进行sum操作,得到了最终一个[2708,16]规模的x!

  • 9
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值