GPU内存溢出,以及forward() missing 1 required positional argument: ‘x‘;设置GPU

在进行深度学习实验时遇到了GPU内存溢出问题,尝试调整batchsize无效。问题根源在于GPU设置代码有误,由于未指定GPU使用,导致多张GPU被启用。解决方案是通过设置环境变量`CUDA_VISIBLE_DEVICES`为'0',只使用一张GPU。此外,还遇到了`forward()`函数缺少参数的问题,可能与批次大小不匹配有关。
摘要由CSDN通过智能技术生成

问题

  1. 在实验过程里,总是遇到GPU内存溢出的问题,怎么改batchsize都不行
    表面原因设置gpu的代码有问题。究其原因,还是因为穷。
    在代码里
import os 
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2" 

或在终端里

CUDA_VISIBLE_DEVICES=0,1
  1. 清理gpu
nvidia-smi --gpu-reset -i [gpu_id]
# 或者杀掉进程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值