常用的路径规划算法总结

路径规划算法根据规划场景不同可以分为全局路径规划算法局部路径规划算法
一般来说,全局的算法只适用于静态障碍物的规划,不适用于动态环境;
而局部的算法适用于动态障碍的避障,但容易陷入局部最优。
接下来将分别介绍各种类型的代表性算法

1 全局路径规划算法

1.1基于采样的算法

1.1.1RRT系列算法

1.1.1RRT算法 (快速扩展随机树法)

在这里插入图片描述

主要思想:通过构建一颗从起点开始生长的随机树来探索地图,当随机树扩展到目标区域,通过回溯即可得到从起点到目标区域的无碰撞路径。
优点:①适用于高维空间的路径规划问题;②具有概率完备性,即只要存在可行路径,当算法运行时间足够长的时候,一定可以找到这条可行路径。
缺点:①生成的路径 的曲折度高;②具有生成的路径具有不确定性
简要伪代码如下:

Initialize map, starting point, random tree T and target area
	while not find path:
		randPoint = randSample(map) 	//Get random points by random sampling in map space
		nearestPoint = findNearestPoint(randPoint,T) 	//Get the nearest point to randPoint from the nodes of the random tree T
		newPoint = extend
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值