量化交易策略的设计与回测

使用akshare获取历史数据,设计简单交易策略:股价下跌时买入,上涨时卖出。通过回测,发现该策略在特定行情下可实现约2%的收益率。涉及数据筛选、涨跌计算、交易决策及可视化展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有了akshare的数据集,我们可以利用历史数据设计简单的策略并进行回测。

最简单的策略:下跌时买入,上涨时卖出。

安装

!pip3 install akshare --upgrade # 这是akshare的
import pandas as pd
import akshare as ak

导入数据

data = ak.fund_etf_fund_info_em('510210','20230101','20230331')
data

运行结果:


筛选要用的数据

df = data[['净值日期','单位净值']]
df


计算环比上一个交易日的涨跌

# 计算每日价格涨跌额
df['diff'] = df['单位净值'].diff()
df.head()
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值