如何理解α、β一类错误和二类错误?

本文介绍了统计假设检验中的关键概念,如原假设和备择假设,以及显著性水平和置信水平的重要性。通过ABTest的例子,阐述了一类错误(误判无效为有效)和二类错误(误判有效为无效)在业务决策中的影响,强调了控制一类错误的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原假设 H0:一般是想要推翻的结论,如指标没有变化,实验组和对照组的该结果指标没有差异等。

备择假设 H1:一般是想要证明的结论,如实验组的指标是显著提升的,指标提升10%等。

弃真错误/一类错误/显著性水平 α:表示原假设H0为真时,但拒绝原假设的概率;通常取α=0.05或α=0.01。

置信水平 1-α:表示区间估计的可靠性。

取伪错误/二类错误 β:接受错误原假设的概率。

统计检验效力 1-β:当H0为假时,能够准确得出“拒绝H0”这个正确结论的概率,所以也称为检验效力。

概率

含义

结果

α

拒绝正确原假设的概率

×

1-α

接受正确原假设的概率

1-β

拒绝错误原假设的概率

β

接受错误原假设的概率

×


实例:

做了一个ABTest判断新功能上线判断效果:H0没有效果,H1有效果。

业务上的一类错误和二类错误:

一类错误:功能的改动并没有效果,但我们误认为有效果;(假设功能确实没有效果,原假设H0是成立的,但错误地认为有效果,就把功能上线了,则犯了弃真错误)。

二类错误:功能的改动有效果,但我们误认为没有效果;(假设功能有效果,则原假设H0是错误的,本应该被推翻的,但却接受了原假设,则犯了取伪错误)。

通常第一类错误更不能接受,因为宁愿砍掉几个好的策略,也不能让一个不好的策略上线。

### 基于一型错误二型错误的统计学样本量计算 在进行假设检验时,为了控制I类错误(α)II类错误(β),并确保研究有足够的效力(power=1-β)来检测到真实的效应,合理的样本量估计至关重要。当考虑这两类错误的概率时,样本量的选择不仅影响着结论的有效性可靠性,也直接影响到资源分配效率。 对于特定的研究设计来说,样本量估算通常是通过设定预期的效果大小(effect size)、显著性水平(significance level, α)以及所需的统计功效(statistical power, 1−β)来进行。效果大小反映了处理间差异的程度;而显著性水平决定了愿意接受的第一类错误风险;最后,统计功效则指出了正确拒绝虚无假设的能力[^1]。 具体到样本量计算上,可以采用多种方式实现这一目标: #### 方法概述 一种常见的方式是利用软件工具或编程环境中的专用函数完成此过程。例如,在R语言环境中,`pwr`包提供了方便易用的功能用于不同类型的t测试其他常用统计分析下的样本量规划。特别是针对配对t检验的情况,可以通过调用`pwr.t.test()`函数指定相应的参数值来获得所需最小样本数目的建议[^4]。 #### 计算实例 下面给出一段Python代码片段作为示范,展示如何基于给定的一类错误率(alpha), 功效(beta对应的power),以及期望发现的效果大小(d Cohen's d effect size) 来求解必要的样本数量n: ```python from statsmodels.stats.power import TTestPower alpha = 0.05 # I 类错误概率 desired_power = 0.8 # 所需的功效 (即 II 类错误率为 0.2) effect_size = 0.5 # 效果大小d analysis = TTestPower() sample_size_needed = analysis.solve_power( effect_size=effect_size, nobs=None, alpha=alpha, power=desired_power) print(f"Required sample size per group: {round(sample_size_needed)}") ``` 这段脚本使用了`statsmodels`库里的`ttest_power`模块执行功率分析,并返回每组至少需要多少观测才能满足预先定义的标准。这里假定了双侧检验(two-sided test)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值