基于推荐系统的矩阵分解
矩阵分解就是把原来的大矩阵,近似的分解成小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵
我们知道要做推荐系统,最基本的数据就是用户-物品的评分矩阵
上图中:
矩阵中,描述了5个用户(U1,U2,U3,U4 ,U5)对4个物品(D1,D2,D3,D4)的评分(1-5分),- 表示没有评分,现在目的是把没有评分的 给预测出来,然后按预测的分数高低,给用户进行推荐。
如何预测缺失的评分呢?
- 对于缺失的评分,可以转化为基于机器学习的回归问题,也就是连续值的预测,对于矩阵分解有如下式子,R是类似图1的评分矩阵,假设NM维(N表示行数,M表示列数),可以分解为P跟Q矩阵,其中P矩阵维度NK,P矩阵维度K*M。
式1
- 对于P,Q矩阵的解释,直观上,P矩阵是N个用户对K个主题的关系,Q矩阵是K个主题跟M个物品的关系,至于K个主题具体是什么,在算法里面K是一个参数,需要调节的,通常10~100之间。
式2
- 对于式子2的左边项,表示的是R^第i行,第j列的元素值,对于如何衡量,我们分解的好坏呢,式子3,给出了衡量标准,也就是损失函数,平方项损失,最后的目标,就是每一个元素(非缺失值)的e(i,j)的总和
最小
式3
- 下面既是基于梯度下降的优化算法,p,q里面的每个元素的更新方式
式4 - 不停迭代直到算法最终收敛(直到sum(e^2) <=阈值)
代码如下:
import matplotlib.pyplot as plt
from math import pow
import numpy
def matrix_factorization(R,P,Q,K,steps=5000,alpha=0.0002,beta=0.02):
Q=Q.T # .T操作表示矩阵的转置
result=[]
for step in range(steps):
for i in range(len(R)):
for j in range(len(R[i])):
if R[i][j]>0:
eij=R[i][j]-numpy.dot(P[i,:],Q[:,j]) # .dot(P,Q) 表示矩阵内积
for k in range(K):
P[i][k]=P[i][k]+alpha*(2*eij*Q[k][j]-beta*P[i][k])
Q[k][j]=Q[k][j]+alpha*(2*eij*P[i][k]-beta*Q[k][j])
eR=numpy.dot(P,Q)
e=0
for i in range(len(R)):
for j in range(len(R[i])):
if R[i][j]>0:
e=e+pow(R[i][j]-numpy.dot(P[i,:],Q[:,j]),2)
for k in range(K):
e=e+(beta/2)*(pow(P[i][k],2)+pow(Q[k][j],2))
result.append(e)
if e<0.001:
break
return P,Q.T,result
if __name__ == '__main__':
R=[
[5,3,0,1],
[4,0,0,1],
[1,1,0,5],
[1,0,0,4],
[0,1,5,4]
]
R=numpy.array(R)
N=len(R)
M=len(R[0])
K=2
P=numpy.random.rand(N,K) #随机生成一个 N行 K列的矩阵
Q=numpy.random.rand(M,K) #随机生成一个 M行 K列的矩阵
nP,nQ,result=matrix_factorization(R,P,Q,K)
print("原始的评分矩阵R为:\n",R)
R_MF=numpy.dot(nP,nQ.T)
print("经过MF算法填充0处评分值后的评分矩阵R_MF为:\n",R_MF)
#-------------损失函数的收敛曲线图---------------
n=len(result)
x=range(n)
plt.plot(x,result,color='r',linewidth=3)
plt.title("Convergence curve")
plt.xlabel("generation")
plt.ylabel("loss")
plt.show()