矩阵分解(特征分解、SVD分解)

  • 矩阵乘法:线性变换,对向量进行旋转和长度伸缩,效果与函数相同;
  • 特征向量:指向只缩放不旋转的方向;
  • 特征值:即缩放因子;
  • 旋转矩阵无实数特征向量和特征值。

一、特征值和特征向量

1.1 定义

若对于N阶矩阵A,存在实数 λ \lambda λ及非零向量 x \boldsymbol{x} x,满足 A x = λ x \boldsymbol{Ax}=\lambda\boldsymbol{x} Ax=λx,则称 λ \lambda λ是A的特征值,非零向量 x \boldsymbol{x} x是A的特征向量。

1.2 几何意义

对于一个n维的向量x,左乘一个n阶的方阵A得到Ax,从几何意义理解,是对x进行了线性变换,变换之后的向量y和原向量x的方向和长度都发生了变化。但是对于特定的矩阵A,总存在一些特定方向的向量x,使得Ax的方向不发生变化,只是长度发生变化。令这个长度发生的变化作为系数 λ \lambda λ,那么这样的非零向量就称为矩阵A的特征向量, λ \lambda λ就是这个特征向量对应的特征值。例如:
A = [ 2 1 1 2 ] x = [ 0 1 ] T A=\left[\begin{matrix}2\quad 1\\1\quad2\end{matrix}\right] \boldsymbol{x}=\left[0\quad 1\right]^T A=[2112]x=[01]T
则有:
A x = [ 1 2 ] A\boldsymbol{x}=\left[\begin{matrix}1\\2\end{matrix}\right] Ax=[12]
可见,向量x左乘矩阵A之后,长度和方向均发生了变化。然而 λ x \lambda\boldsymbol{x} λx只是长度改变,方向不发生变化。

1.3 求解过程

求解特征值和特征向量的过程就是齐次线性方程组求非零解的过程: ( A − λ I ) x = 0 (A-\lambda\boldsymbol{I})\boldsymbol{x}=0 (AλI)x=0。齐次线性方程组若要存在非零解,那么需要系数行列式 ∣ A − λ I ∣ |A-\lambda\boldsymbol{I}| AλI不为零,也就是系数矩阵 A − λ I A-\lambda\boldsymbol{I} AλI的秩小于n。
 
在这里插入图片描述
在这里插入图片描述

线性代数精华——矩阵的特征值与特征向量

如何求矩阵的特征值和特征向量_是可帅鸭的博客-CSDN博客

线性代数学习笔记(二十八)——齐次方程组的解_齐次线性方程组_雏鹰高飞的博客-CSDN博客

求解矩阵特征值及特征向量 - Peyton_Li - 博客园

1.4 性质

(1)矩阵的迹=特征值之和
t r ( A ) = λ 1 + λ 2 + . . . + λ n tr(A)=\lambda_1+\lambda_2+...+\lambda_n tr(A)=λ1+λ2+...+λn
(2)矩阵的行列式=特征值之积
d e t ( A ) = λ 1 λ 2 . . . λ n det(A)=\lambda_1\lambda_2...\lambda_n det(A)=λ1λ2...λn

二、矩阵运算

2.1 余子式

余子式 M i j M_{ij} Mij是指去掉第i行以及第j列,剩下的n-1阶行列式。

2.2 代数余子式

在这里插入图片描述

2.3 伴随矩阵

伴随矩阵由各个元素的代数余子式构成。
在这里插入图片描述

2.4 计算逆矩阵

2.4.1 伴随矩阵法

在这里插入图片描述

2.4.2 初等变换法

在这里插入图片描述

三、矩阵分解

矩阵分解常用的方法:特征值分解(Eigen Decomposition)、奇异值分解SVD(Singular Value Decomposition)、主成分分析(Principal Component Analysis)、Funk-SVD(Simon Funk SVD)。特征值分解仅限于矩阵为方阵的情况,当矩阵不为方阵时,可使用奇异值分解SVD。

3.1 特征分解(ED)

特征值分解,就是将矩阵分解成特征值和特征向量的形式,通过特征值和特征向量可以重构该矩阵。第一节中介绍了特征值和对应的特征向量的计算方式,现在直接利用特征值和特征向量,来恢复矩阵A。
A = W Σ W − 1 \boldsymbol{A}=\boldsymbol{W}\boldsymbol{\Sigma}\boldsymbol{W}^{-1} A=WΣW1
其中W是矩阵A的特征向量组成的矩阵, Σ \boldsymbol{\Sigma} Σ是一个对角阵,对角线上的元素就是特征值。特征值分解可以得到特征值和特征向量,特征值表示这个特征到底有多重要,特征向量表示这个特征是什么。可以将每个特征向量理解为一个线性的子空间,可以利用这些线性子空间做很多事情。

比如上面 1.3 节中的矩阵 A 可表示为:
在这里插入图片描述

如何求矩阵的特征值和特征向量_是可帅鸭的博客-CSDN博客

3.2 奇异值分解(SVD)

3.2.1 如何计算?

A = U Σ V − 1 \boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{-1} A=UΣV1

其中,U为 m ∗ m m*m mm的矩阵,称为A的左奇异矩阵; Σ \boldsymbol{\Sigma} Σ m ∗ n m*n mn的矩阵,除了主对角线上元素为矩阵A的奇异值之外,其他元素都是0;V为 n ∗ n n*n nn的矩阵,称为A的右奇异矩阵。U和V都是酉矩阵,即满足: U T U = I \boldsymbol{U^T}\boldsymbol{U}=\boldsymbol{I} UTU=I V T V = I \boldsymbol{V^T}\boldsymbol{V}=\boldsymbol{I} VTV=I
在这里插入图片描述

  • A A T \boldsymbol{A}\boldsymbol{A^T} AAT的特征向量构成A的左奇异矩阵 U \boldsymbol{U} U

  • A T A \boldsymbol{A^T}\boldsymbol{A} ATA的特征向量构成A的右奇异矩阵 V \boldsymbol{V} V

  • A T A \boldsymbol{A^T}\boldsymbol{A} ATA的特征值的平方根构成奇异值矩阵 Σ \boldsymbol{\Sigma} Σ
    在这里插入图片描述
    在这里插入图片描述

3.2.2 例题

在这里插入图片描述
则有:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(四)矩阵的特征分解与奇异值分解(SVD)

3.2.3 物理意义

矩阵的物理意义就是空间变换,SVD的物理意义就是分解 —— 将一个复杂的转换过程分解为三个简单的基本变换(旋转、伸缩、旋转)。奇异值的大小表征了相应奇异向量的伸缩程度(可以理解为权重),奇异值越大,对应的奇异向量对最终结果影响越大。奇异值矩阵有几个非零奇异值,则矩阵A就是秩几矩阵。(可用于图像压缩、去噪)
在这里插入图片描述

其中, u 1 \boldsymbol{u_1} u1 U \boldsymbol{U} U第一列, v 1 \boldsymbol{v_1} v1 V \boldsymbol{V} V第一行。(将三个矩阵拆开即可证明)
 
在这里插入图片描述
奇异值的物理意义是什么? - 知乎

3.3 应用

  • 降维;(左奇异矩阵通常用于行数压缩;右奇异矩阵通常用于列数(即维数)压缩,也就是PCA降维原理)
  • 图像压缩;
  • 图像去噪;

【《数学之美》笔记(一)】奇异值分解(SVD)的原理、演算和应用

 
(本文完整的pdf请关注公众号“张张学算法”,并回复“019”获取~)
 

  • 22
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Satisfying

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值