矩阵分解--数学篇

一 概述

利用矩阵分解来解决实际问题的分析方法很多,如PCA(主成分分析)、ICA(独立成分分析)、SVD(奇异值分解)、VQ(矢量量化)等。在所有这些方法中,原始的大矩阵V被近似分解为低秩的V=WH形式。这些方法的共同特点是,因子W和H中的元素可为正或负,即使输入的初始矩阵元素是全正的,传统的秩削减算法也不能保证原始数据的非负性。在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。例如图像数据中不可能有负值的像素点;在文档统计中,负值也是无法解释的。

二 矩阵基础知识

单位矩阵

初等矩阵:用 Eij表示,即该矩阵中在(i,j)处为1,其他地方都为零。这一类矩阵在高斯消元中非常重要。

实对称矩阵

对称矩阵S满足,ST=S。实对称矩阵一定可以正交对角化,即存在正交矩阵Q,使得S=QTDQ

(实)反对称矩阵

实反对称矩阵的特征值要么是零要么是纯虚数。
在这里插入图片描述

对角矩阵:主对角线之外的元素皆为0的矩阵

三角矩阵:上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零

正交矩阵

正交矩阵也能正交对角化。即存在正交矩阵Q,使得
[公式] ,其中每个 [公式] 是二阶Givens旋转矩阵。正交矩阵的特征值的模都为1.

酉矩阵

常用U表示,满足U*=U-1,酉矩阵的是正交矩阵的在复数域的推广。
酉矩阵是满秩的,每一列都是单位向量,其每两列都是正交的。
(1)酉矩阵的特征值的模都为1
(2)酉矩阵不是Hermite矩阵,因为它不满足U*=U.
(3)酉矩阵能够对角化吗?当然可以(列满秩方阵),并且可以酉对角化!即对任意的酉矩阵B,存在酉矩阵U,使得 [公式] .

Hermite矩阵

1)Hermite矩阵满足U*=U,其是对称矩阵在复数域的推广。
Hermite矩阵的特征值都是实数。这个性质也很重要。
(2)Hermite矩阵可以对角化,并且仍然是酉对角化!即存在Hermite矩阵H,存在酉矩阵U,使得 H = U*DhU

反Hermite矩阵

类似的,反Hermite矩阵满足U*=-U
反Hermite矩阵的特征值是纯虚数。

正规矩阵

上面描述的矩阵都具有非常好的性质,不仅能对角化,有的甚至能酉对角化,这是非常特殊的。他们统称为正规矩阵
正规矩阵A满足:AA=AA,令 M=AA=AA ,则M是一定是半正定的。

在实数域中,我们常用的矩阵为对角矩阵,对称矩阵,正交矩阵和三角矩阵。
在复数域中,我们常用的矩阵为酉矩阵,Hermite矩阵等。

NMF非负矩阵分解

非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值