BiLSTM之二:工程应用须知

现在有很多成熟的深度学习框架集成了BiLSTM模型,但想使用它们并非没有门槛,至少要对说明文档中的参数的释义有充分的理解。我之前写过一篇介绍BiLSTM的文章(以下用「上一篇」来指代该文章),其侧重于模型的内部结构而非工程实现,作为对该文章的补充,本文以计算BiLSTM的参数数量为切入点,再深入理解一下模型的工程实现。

建议不熟悉BiLSTM的读者在阅读本文之前先阅读上一篇文章,本文的公式及符号与该文章保持一致。

1、paddlepaddle中的LSTM模型

为叙述方便,我们将上一篇文章中的一个LSTM cell的内部结构图粘贴到此:
LSTM的cell

cell可以被翻译为“神经元”,但在LSTM的场景中容易让人误解,因为一层的LSTM模型只有一个“神经元”——这看上去似乎不够「深度学习」,所以我将不再翻译,并直接使用cell来指代这个结构。请读者仔细思考全连接神经网络中的“神经元”的概念以及此处这个cell的概念之间的区别。

观察这个cell结构,我们不难发现,整个计算中存在维度变化的地方只在于 a t − 1 a_{t-1} at1 X t X_t Xt的合并向量与权重相乘时。

在飞浆中,通过调用paddle.nn.LSTM类就可以实现LSTM的搭建。提醒读者注意,类的实例化是搭建神经网络结构的过程;而真正的前向计算,是通过调用该实例的forward()方法实现的

首先,导入基础模块:

from paddle import nn

然后,实例化一个LSTM对象:

lstm = nn.LSTM(input_size=3, hidden_size=9)

上一行代码初始化了一个LSTM实例。对于LSTM类而言,只有前两个参数是必须的,即input_sizehidden_size,这里赋值分别为39input_size指的是cell新输入的数据的维度,即 X t X_t Xt的维度。hidden_size指的是 X t X_t Xt(其实还有 a t − 1 a_{t-1} at1,但它并不影响维度)经过与权重做矩阵乘法后的输出维度,这个维度完全由权重矩阵的形状决定,因此被称为“隐藏层大小”。

介绍完关键参数之后,接下来看一下参数数量是如何计算的。

2、参数的数量

首先,不考虑 a t − 1 a_{t-1} at1 C t − 1 C_{t-1} Ct1的输入时,给定一个 ( 3 , 1 ) (3,1) (3,1)的输入向量,那么会得到一个 ( 9 , 1 ) (9,1) (9,1)的输出向量,其计算过程如下:
在这里插入图片描述
这里以「输出门」为例,直观地展现了计算过程中的维度变化情况。其他的「输入门」、「遗忘门」以及与 W W W的计算过程都是类似的。也就是说,在不考虑 a t − 1 a_{t-1} at1 C t − 1 C_{t-1} Ct1的情况下,所需要的参数总量一共是:

( 3 ∗ 9 + 9 ) ∗ 4 = 144 (3*9+9)*4=144 (39+9)4=144

在LSTM中, a t − 1 a_{t-1} at1 C t − 1 C_{t-1} Ct1 o t o_t ot具有相同的维度,在这里为9。因此, a t − 1 a_{t-1} at1 X t X_t Xt同时参与运算的过程如下:
在这里插入图片描述
此时的参数数量一共为:

( 9 ∗ 9 + 9 ∗ 1 + 9 ∗ 3 + 9 ∗ 1 ) ∗ 4 = 504 (9*9+9*1+9*3+9*1)*4=504 (99+91+93+91)4=504

至此,我们已经得到了单层的LSTM的参数数量的计算公式:

如果输入向量的维度为 n n n,隐藏层维度为 m m m,则参数总量为 4 ( m 2 + 2 m + m n ) 4(m^2+2m+mn) 4(m2+2m+mn)

3、BiLSTM

如果想要构造BiLSTM,则可以在实例化LSTM类时指定direction参数:

lstm = nn.LSTM(input_size=3, hidden_size=9, direction='bidirect')

其参数数量是相同设置的LSTM的参数数量的2倍。

不同的深度学习框架基于LSTM构造BiLSTM的方法略有不同。

4、一个回归的例子

4.1 基础版本

我们不涉及任何具体的业务,也不涉及数据预处理过程,只讨论如何基于飞浆建立一个BiLSTM回归模型。

4.1.1 原始数据

首先让我们生成数据:

import numpy as np
import pandas as pd
import paddle
from paddle import nn

np.random.seed(1234)

data = np.random.random(size=(10000, 8))
df = pd.DataFrame(data, columns=[f'x{i}' for i in range(1, 8)] + ['y'])
print(df.head())

由于指定了随机数种子,输出一定是下面的内容:

         x1        x2        x3  ...        x6        x7         y
0  0.191519  0.622109  0.437728  ...  0.272593  0.276464  0.801872
1  0.958139  0.875933  0.357817  ...  0.712702  0.370251  0.561196
2  0.503083  0.013768  0.772827  ...  0.615396  0.075381  0.368824
3  0.933140  0.651378  0.397203  ...  0.568099  0.869127  0.436173
4  0.802148  0.143767  0.704261  ...  0.924868  0.442141  0.909316
[5 rows x 8 columns]

现在,假设我们面临的是一个价格预测问题:y是我们的目标列,表示价格;x1x7为特征列;样本是按照时间顺序排列的。于是,我们的目标是建立一个基于BiLSTM的回归模型来对其进行预测。

4.1.2 模型修改

假设样本数据直接输入BiLSTM模型,那么它的输入大小为7,我们再定义其隐藏层的大小为32,于是,定义网络的代码为:

bilstm = LSTM(7, 32, direction="bidirect")

通过上面的分析可知,对于一个特定的样本(例如,第一行数据),利用bilstm对其进行前向计算后输出分为三部分:输出 o 0 o_0 o0,长期记忆 C 0 C_0 C0以及短期记忆 a 0 a_0 a0;其中的 C 0 C_0 C0 a 0 a_0 a0又将和下一个样本(第二行数据)一起再进行前向计算。

这里所有的下标与python保持一致,从0开始。

如果我们指定的时间步长为5,于是,模型将重复上述过程直到它遍历到第5个样本。这时,我们会得到一个输出 o 4 o_4 o4,并将它作为这一组样本所预测的输出。

但这个输出的维度是64,再与下一个时刻的真实价格 y 5 y_5 y5计算误差前,首先需要将其变为1维。这很简单,再接一个维度为 ( 64 , 1 ) (64,1) (64,1)的全连接层即可。于是,我们计算 y ^ \hat y y^ y 5 y_5 y5的误差后,就可以将该误差反向传播并更新网络参数了。

为了将BiLSTM网络和全连接网络连接到一起,我们可以使用「组网」的方式。它的API是paddle.nn.Sequential,基本用法是:

model = paddle.nn.Sequential(
	net1,
    net2,
    ...
)

它的作用是很直观的:将不同的网络结构堆叠起来,前面网络的输出作为后续网络的输入,从而实现快速建模。

但使用这个API的时候要注意:前一个网络的输出的形状必须与后一个网络的输入的形状一致。我们知道,BiLSTM的输出有三部分:第一部分是 y ^ \hat y y^,后面两部分存储在一个元组中,分别表示 a a a C C C。所以,为了能够正确地只将第一部分传入全连接网络,需要对基础的paddle提供的LSTM类进行改写:

class MyLSTM(nn.LSTM):
    def __init(self, *args, **kwargs):
        # 实例化时与父类保持一致
        super().__init__(*args, **kwargs)
	
    def forward(self, inputs):
        # 调用父类的前向函数来计算,但只取返回结果的第一部分
        output, _ = super().forward(inputs)
        return output[:, -1, :]  # 在第二个维度上只取最后一组值,其实就是获取最后一个时间步输出的y_hat

有的读者可能会产生一个疑问:这样修改前向运算的输出之后,第一个时间步的输出就少了 a a a C C C,那下一个时间步在运算时岂不是就无法捕获长短时的记忆了?

这里就需要解释一下LSTM的实现机制了。在paddle中,forward其实是在计算完所有的时间步后才一次性输出的。也就是说,假设我们的时间窗口选的是5,那么forward的第一个输出其实是包含了对应于这5个样本点的5个输出值,第二个输出的 a a a C C C只保留最终的状态,即各有一个值。

注意:

  • 这里的「值」代表的是向量。
  • 在真实的运算中还需要指定batch_size,这里默认为1,在讨论中省略,实际上即使为1也需要对在输入的第一个维度进行指定。

读者可以通过以下的代码来验证一下:

import paddle

# 用上文的data来创建一个tensor,注意这里没有留y,所以input size是8
tiny_tensor = paddle.to_tensor(data[:5], dtype=np.float32)

# 通过两次设置随机数种子,可以是lstm和mylstm的权重完全相同
paddle.seed(1234)
lstm = nn.LSTM(8, 32)
paddle.seed(1234)
mylstm = MyLSTM(8, 32)

tiny_tensor = tiny_tensor.reshape(shape=(-1, 5, 8))  # 必须指定batch_size,这里自动计算
my_out = mylstm(tiny_tensor)
out, _ = lstm(tiny_tensor)
print(my_out == out[:, -1, :])

应该打印以下内容:

Tensor(shape=[1, 32], dtype=bool, place=CPUPlace, stop_gradient=False,
       [[True, True, True, True, True, True, True, True, True, True, True, True,
         True, True, True, True, True, True, True, True, True, True, True, True,
         True, True, True, True, True, True, True, True]])

4.1.3 模型组网

接下来就可以进行模型组网了,非常简单:

model = nn.Sequential(
	MyLSTM(7, 32, direction='bidirect', dropout=0.5),
    nn.Linear(64, 1)
)

# 将模型封装
model = paddle.Model(model)

# 定义优化器、损失函数
model.prepare(paddle.optimizer.RMSProp(0.0001, parameters=model.parameters()),
              paddle.nn.MSELoss())

在调用.fit()方法进行训练之前,我们还需要对训练数据进行一些封装。

4.1.4 数据的处理

在训练开始之前,还需要对数据做如下处理:

  1. 按照指定的时间步长转化成「序列」的形式,划分训练集测试集;
  2. 封装成paddle可接收的数据格式。

对于第一部分,通过以下函数可以实现:

def create_sequence(df, window: int = 5):
    """
    为了能够输入LSTM模型,将数据处理成序列的形式。
    假设输入的df一共有N行,那么处理后的数据的维度为:[N-window, window, 7]
    """
    N = df.shape[0]
    ret = np.empty(shape=(N - window, window, 7))
    y = np.empty(N - window)
    for i in range(N - window):
        end = i + window
        arr = df[['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7']].iloc[i: end].values
        ret[i] = arr
        y[i] = df['y'].iloc[i + window]
    return ret, y


X, y = create_sequence(df)

接着,划分训练集与测试集:

# 按80/20的比例划分
train_size = int(train_X.shape[0] * 0.8)
test_size = train_X.shape[0] - train_size
train_X = X[:train_size]
train_y = y[:train_size]
test_X = X[-test_size:]
test_y = y[-test_size:]

对于第二部分,我们首先需要将数据转化为Tensor:

train_X_tensor = paddle.to_tensor(train_X, dtype=np.float32)
train_y_tensor = paddle.to_tensor(train_y, dtype=np.float32)
test_X_tensor = paddle.to_tensor(test_X, dtype=np.float32)
test_y_tensor = paddle.to_tensor(test_y, dtype=np.float32)

接下来,传给.fit()的训练数据需要满足一定的格式,这里是通过继承Dataset类来实现的。使用这种方法只需要重写Dataset__getitem____len__方法即可:

class MyDataset(paddle.io.Dataset):
    def __init__(self, dataset_type):
        self.dataset_type = dataset_type
        
    def __getitem__(self, idx):
        if self.dataset_type == 'train':  # 训练集的话,返回特征和标签
            return train_X_tensor[idx], train_y_tensor[idx]
        if self.dataset_type == 'test':  # 测试集的话,返回特征
            return test_X_tensor[idx]
       
    def __len__(self):
        if self.dataset_type == 'train': 
            return train_X_tensor.shape[0]
        if self.dataset_type == 'test':
            return test_X_tensor.shape[0]

最终,可以对模型进行训练了:

model.fit(MyDataset('train'), batch_size=32)

然后可以预测:

model.predict(MyDataset('test'))

当然,由于用的是随机数,结果不具备评价意义。

4.2 进阶版本

有时,作为输入的特征不止x1,...,x7,还有历史价格。

换言之,模型由:
在这里插入图片描述
变成了:
在这里插入图片描述
这对于训练过程的影响倒是不大,只需要将create_sequence函数对应的输入特征和输入维度增加,在模型组网时修改输入的维度即可。

但在预测时,问题变得有些麻烦。

我们在预测未来的多个时刻的价格时,需要逐时刻预测,并且将上一时刻的预测价格填充到下一时刻的输入特征中,因为我们没有上一时刻的真实价格数据。

目前,我没有找到paddle中关于处理这种情形的方案,因此,我对MyDataset类和预测的代码做了一些修改:

class MyDataset(Dataset):
    def __init__(self, dataset_type, sub_tensor=None):
        self.dataset_type = dataset_type
        self.sub_tensor = sub_tensor
    
    def __getitem__(self, idx):
        # 训练时不变,但在预测时,必须逐tensor进行预测,这样才能在传入
        # 模型前对输入的tensor进行价格填充
        if self.dataset_type == 'train':
            return train_X_tensor[idx], train_y_tensor[idx]
        if self.dataset_type == 'test':
            # 直接返回输入的tensor
            return self.sub_tensor

    def __len__(self):
        if self.dataset_type == 'train':
            return len(train_y_tensor)
        if self.dataset_type == 'test':
            # 对应的长度永远是1
            return 1

同时,预测的过程也做了修改,用一个定长的队列来存储预测过的价格:

from collections import deque

last_pred = deque(maxlen=5)  # 最大长度为时间窗口长度,再之前的数据对于预测下一个时刻无用
pred_value = []  # 存储预测结果
for i in range(test_X_tensor.shape[0]):
    sub_tensor = test_X_tensor[i]  # 获取待输入的tensor
    if last_pred:  # 已经存在预测结果,则将该结果填充到tensor中
        num = len(last_pred)
        # paddle的tensor修改貌似比较复杂,我没深入研究,采取了个笨办法
        sub_array = sub_tensor.numpy()
        sub_array[-num:][:,-1] = list(last_pred)
        sub_tensor = paddle.to_tensor(sub_array)
    res = model.predict(MyDataset('test', sub_tensor))
    pred_value.append(res)
    last_pred.append(res)  # 更新队列

如果有其他的解决方案,欢迎评论让我知道。

参考:

  • 2
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芳樽里的歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值