多种拧紧策略的控制方法!

针对不同等级的螺栓通常采用不同的拧紧策略,常见的拧紧策略有扭矩控制、扭矩控制+角度监测、角度控制+扭矩监测、夹紧扭矩控制、屈服点控制等,而不同策略之间的拧紧原理、拧紧质量、精度等也都不一样

1、扭矩控制

扭矩控制的应用较为常见,通常应用于C类螺栓的拧紧,简单易操作,只需设定一个扭矩目标数值,然后通过工具拧紧即可。

特点:成本低,可选择的工具类型多(智能拧紧工具可NG提示),但拧紧精度较低,不能防错,螺栓利用率低(50-60%)。

仅采用扭矩控制后,我们会发现目标扭矩合格了,但依旧会出现各种各样的异常故障,因此在保证扭矩合格的基础上,也要求角度在合格范围内

2、扭矩控制+角度监测

这个策略本质上还是对扭矩的控制,但在扭矩基础上加上对角度的监控,便于监控过程中出现错牙、滑牙等不合格情况。

特点:无法克服不同摩擦系数对夹紧力的影响,最终夹紧力波动较大,但能识别拧紧过程中的异常情况

3、角度控制+扭矩监测

通常也称为转角法,一般先将螺钉拧至起始扭矩,通常为目标扭矩的40~60%,再从此点开始拧一个规定的转角即可。

这种策略是将螺栓在弹性区域充分拉长,所需的轴向夹紧力由转角产生,从而摩擦阻力对夹紧力的影响也不复存在,进而达到精确控制夹紧力的目的。

特点:转角法可以有效提高拧紧精度,提高螺栓的利用率,但需要全程监控拧紧过程中的扭矩和角度,对拧紧工具的要求比较高,可以通过智能拧紧工具来完成

Tips:对于起始扭矩的设定较为重要。

若起始扭矩过小,转角控制开始时,接触面仍未贴合,会出现夹紧力和转角并不是严格的正比例关系,使得最终夹紧力发生较大偏差;

若起始扭矩过大,会导致扭矩控制阶段的比例增大,即摩擦因素带来的误差变大,也会影响最终的夹紧力。

4、夹紧扭矩控制

夹紧扭矩控制是结合了扭矩斜率和扭矩控制或角度控制策略的一种综合拧紧策略,通过扭矩斜率的变化找到螺栓拧紧时的落座点,然后再叠加需要的扭矩或角度即可,可以保证夹紧力得到很好的控制。

特点:适用于自攻钉及小螺钉的应用,而且在应用前需要采集尽量多的样本,在此基础上设定合理的扭矩斜率和叠加的扭矩或角度。

5、屈服点控制

屈服点控制法属于高阶策略,通常应用于A类螺栓的拧紧,将螺栓拧紧至屈服点后,便停止拧紧。

主要是利用了材料从弹性变形区向塑性变形区过渡时的扭矩斜率变化特征,来找寻拧紧屈服点,在整个拧紧过程中,需要一直计算扭矩斜率,把弹性变形区的扭矩斜率作为参考斜率,进入塑性变形区后,当斜率低于参考斜率的一半,即到达屈服点,停止拧紧,同时扭矩、角度、扭矩斜率都在参数设定范围内,即拧紧合格,反之会出现NG报警。

特点:不受扭矩法的摩擦系数和转角法的转角起始点的影响,且拧紧精度较高,材料利用率高达100%,但对工况要求高,必须保证螺栓一致性和贴合面的质量。

### 解析Atlas(阿特拉斯)拧紧枪的扭矩数据 #### 扭矩数据文件格式说明 阿特拉斯拧紧枪通常通过其配套设备(如Power Focus 6000控制器或TC4000系列拧紧机)记录和传输数据。这些设备支持多种通信协议,其中OpenProtocol是最常用的标准化接口之一[^4]。通过该协议,可以获取到包括扭矩、角度在内的关键参数。 具体来说,阿特拉斯拧紧枪的数据文件可能以二进制或ASCII编码形式存储,取决于所使用的硬件型号及其配置。对于常见的CSV或JSON格式输出,每条记录一般包含以下字段: - 时间戳:表示测量的时间点。 - 工具ID:用于区分不同的拧紧工具。 - 转角值(Angle):单位为度(°),描述螺栓旋转的角度变化。 - 扭矩值(Torque):单位为牛米(Nm),反映施加的力量大小。 如果采用的是DccS这样的第三方软件,则可以直接读取并可视化上述信息[^2]。 #### 数据处理方法 为了有效解析来自阿特拉斯拧紧枪的扭矩数据,推荐按照如下方式操作: 1. **连接与初始化** 使用Python或其他编程语言建立与拧紧系统的网络链接。以下是基于TCP/IP实现的一个简单例子: ```python import socket HOST = 'your_ip_address' # 替换为目标机器IP地址 PORT = your_port_number # 替换为实际端口号 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((HOST, PORT)) while True: data = s.recv(1024).decode('utf-8') if not data: break process_data(data) ``` 2. **解码原始消息流** 接收到的消息需依据官方文档定义的标准结构进行拆分解读。例如,在某些情况下,单次响应可能是固定长度字符串数组的一部分;而在其他场景下则表现为自描述型XML/JSON对象集合。 3. **提取感兴趣变量** 针对每一帧完整报文,定位目标属性位置,并将其转换成易于后续计算的形式。假设我们只关心最终结果而非整个历史轨迹的话,那么只需保留最后一个有效的力偶数值即可。 4. **质量评估与异常检测** 基于预先设定阈值范围或者统计模型判断当前装配状态是否合格。一旦发现超出允许误差界限的情况发生时,应即时报警提示相关人员采取纠正措施[^1]。 5. **存档备份机制** 定期保存经过初步筛选后的干净样本集至本地数据库中长期留存备查。这不仅有助于追溯过往作业表现趋势规律总结经验教训,而且还能为主动预防维护策略提供决策支撑材料。 ```python def save_to_db(record): """模拟向关系型DB写入新纪录""" pass for item in parsed_results: try: validate(item['torque'], min_limit=50, max_limit=70) save_to_db(item) except ValueError as e: log_error(e.message) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值