D-separation

斯坦福的概率图模型PGM课程中,提到D-separation。
后面在Eric Xing老师的课件中有相关内容。

结论:
X → Y → Z, 激活 ⇐⇒ Y未被观测到时.
X ← Y → Z, 激活 ⇐⇒ Y未被观测到时.
X → Y ← Z, 激活 ⇐⇒ Y或Y的后代被观测到时.

在这里插入图片描述
左右都是 X ← Y → Z, 左图意思为,当Y被观测到时(深色),该路径被封锁,信息不会流动。在这种情况下,只有Y未知时,才会有信息流通(右图)。

类似还有:
在这里插入图片描述
当路径封锁时,我们说这个图是D-separation的,表示为dsepG(X;Z|Y),进一步有图是d-separation的时候,有
给出Y时,X与Z独立。
I(G) = {X ⊥ Z|Y : dsepG(X;Z|Y)}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值