斯坦福的概率图模型PGM课程中,提到D-separation。
后面在Eric Xing老师的课件中有相关内容。
结论:
X → Y → Z, 激活 ⇐⇒ Y未被观测到时.
X ← Y → Z, 激活 ⇐⇒ Y未被观测到时.
X → Y ← Z, 激活 ⇐⇒ Y或Y的后代被观测到时.
左右都是 X ← Y → Z, 左图意思为,当Y被观测到时(深色),该路径被封锁,信息不会流动。在这种情况下,只有Y未知时,才会有信息流通(右图)。
类似还有:
当路径封锁时,我们说这个图是D-separation的,表示为dsepG(X;Z|Y),进一步有图是d-separation的时候,有
给出Y时,X与Z独立。
I(G) = {X ⊥ Z|Y : dsepG(X;Z|Y)}