理解概率图模型中的有向分离(d-separation)

Abstract: d-separation是什么?有什么作用?

引言

给定贝叶斯网,我们能不能根据这个有向无环图的结构,来简化概率计算?
比如给定下面这个贝叶斯网,我们就知道,X与Y互为独立事件(记做 XY )。

这里写图片描述

知道了这个结论,那概率 P(X,Y) P(X|Y) P(Y|X) 的计算问题,就能得到简化(如下)。

P(X,Y)=P(X)P(Y)

P(X|Y)=P(X)

P(Y|X)=P(Y)

这就是有向分离(d-separation)的基本思想:通过贝叶斯网中看两个事件的关系(两个事件是否条件独立),从而简化概率计算。
若X与Y关于Z是有向分离(d-separation)的,则 P(X,Y|Z)=P(X|Z)P(Y|Z)

下面通过详细分析贝叶斯网中4种常见的连接情况,来总结有向分离(d-separation)的一般规律。

这里写图片描述

4种连接情况讨论

这里假设有三个观测事件X,Y,Z。

  • 若不观测Z,计算 P(X,Y)=zP(X,Y,Z) 。只有满足 P(X,Y)=P(X)P(Y) ,才能说明X与Y相互独立。若能得到这个表达式( P(X,Y)=P(X)P(Y) )就能说明X与Y关于Z有向分离(d-separation)的。
  • 若观测Z(以Z作为条件),用条件概率公式计算 P(X,Y|Z)=(P(X)P(Z|X)P(Y|Z))/P(Z) 。只有满足 P(X,Y|Z)=P(X|Z)P(Y|Z) ,才能说明X与Y关于Z相互独立。若能得到这个表达式( P(X,Y|Z)=P(X|Z)P(Y|Z) )就能说明X与Y关于Z有向分离(d-separation)的。

下面就对每一种连接,分两种情况(“观测Z”与“不观测Z”)讨论。

直接连接 (X->Z->Y)

  • 若不观测Z,则 P(X,Y)=zP(X,Y,Z)=P(X)zP(Z|X)P(Y|Z)=P(X)P(Y|X) 。X与Y并不是独立事件。

  • 若观测Z,则P(X,Y|Z)=P(X,Y,Z)/P(Z)=(P(X)P(Z|X)P(Y|Z))/P(Z)=P(X|Z)P(Y|Z)。X与Y关于Z条件独立。

(推导中需要用到P(A|B)=P(AB)/P(B),以及P(B)P(A|B)=P(A)P(B|A))

间接因果作用(Y->Z->X)

  • 若不观测Z,则 P(X,Y)=zP(X,Y,Z)=P(Y)P(X|Y) 。X与Y并不是独立事件。

  • 若观测Z,则P(X,Y|Z)=P(X,Y,Z)/P(Z)=(P(Y)P(Z|Y)P(X|Z))/P(Z)=P(Y|Z)P(X|Z)。X与Y关于Z条件独立。

共同的原因(X<-Z->Y)

  • 若不观测Z,则 P(X,Y)=zP(X,Y,Z)=zP(X|Z)P(Y|Z)P(Z) 。X与Y并不是独立事件。

  • 若观测Z,则P(X,Y|Z)=P(X,Y,Z)/P(Z)=(P(X|Z)P(Z)P(Y|Z))/P(Z)=P(X|Z)P(Y|Z)。X与Y关于Z条件独立。

共同的作用(X->Z<-Y)

  • 若不观测Z,则 P(X,Y)=zP(X,Y,Z)=P(X)P(Y)zP(Z)=P(X)P(Y) 。X与Y相互独立。

  • 若观测Z,则P(X,Y|Z)=P(X,Y,Z)/P(Z)=P(X)P(Y)P(Z|X,Y)/P(Z)。X与Y关于Z不独立。

简化

要去推导这些公式来验证X与Y是否关于Z有向分离,太复杂了点。有没有简单点的方法来判断X与Y是否是关于Z有向分离的呢?
当然可以,下面的文字就说明如何做到看图就能判断有向分离

X influence Y

若X与Y相互独立,就说明X不会影响(influence)Y。将上述4种情况总结起来,见下图:

这里写图片描述

Active Trails

当下面两个条件中有一个被满足,说明一个Trail(X1-X2-…-Xn)关于Z是Active的:
(1)对于任意V型结构:Xi->X<-Xj,X属于Z,或X的子事件属于Z
(2)没有Xi属于Z(Z不为空)

下面举例说明怎么用这个规则。
在下面这个贝叶斯网中

这里写图片描述

给定一个Trail:D->G<-I->S
* 若Z={},条件(2)不满足。考虑条件(1),Trail中有V型结构(D->G<-I),但该结构的所有事件(D,G,I)都不属于Z,,且G的子事件L也不属于Z,所以这个Tail不Active

  • 若Z={L},则这个Trail中所有事件(D,G,I,S)都不属于Z,条件(2)被满足。考虑条件(1),Trail中有V型结构(D->G<-I),虽然该结构的所有事件(D,G,I)都不属于Z,但G的子事件L属于Z,所以条件(1)被满足。此时Trail是Active的。

  • 若Z={L,I},则这个Trail中有(所有事件D,G,I,S),事件I属于Z,条件(2)不满足。所以这个Tail不Active。(虽然条件(1)被满足)

看图判断d-separation

定义:给定Z,只要在贝叶斯网中,X到Y的Trail不是Active,就说明X和Y关于Z是有向分离(d-separation)的。

结论

给定一个贝叶斯网,只要看图判断一个从X到Y的Trail是不是Active,就能判断X与Y是不是有向分离(Active则不是有向分离)。用两句话总结本文:

  • X和Y关于Z有向分离,等于X和Y关于Z条件独立
  • X到Y的Tail不是Active,等于X和Y关于Z条件独立

例子:判断下图C与D是不是关于F有向分离?

这里写图片描述

解答:先判断图中的整个Tail是不是Active:
考虑条件(1),图中有V结构(C->E<-D),虽然这个V结构中的所有事件(C,E,D)都不属于F,但中间点E的子事件F属于F。所以条件(1)满足,该Tail是Active的,所以C与D不满足有向分离

参考

  • 24
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
目前,有一些先进的深度学习语音分离网络模型已经取得了显著的成果。以下是一些比较先进的深度学习语音分离网络模型: 1. Deep Clustering (DC):Deep Clustering是一种经典的深度学习语音分离模型。它使用了编码器-解码器结构和频谱聚类的思想,通过将频谱特征映射到一个低维空间,并使用K-means算法进行聚类来实现源信号的分离。 2. TasNet:TasNet(Time-domain Audio Separation Network)是一种基于时间域的语音分离模型。它使用一维卷积神经网络(Conv1D)来直接在时域上对音频信号进行处理,通过学习时间上的滤波器来实现源信号的分离。 3. Chimera++:Chimera++是一种基于深度学习的语音分离模型,它结合了U-Net和TasNet的思想。Chimera++使用了编码器-解码器结构,并在解码器使用了一维卷积神经网络,以在时域上进行源信号的分离。 4. Wave-U-Net++:Wave-U-Net++是对Wave-U-Net模型的改进,它在Wave-U-Net的基础上引入了时间延迟卷积(Time-Delayed Convolution),以增加模型在时域上的分离能力。 5. Demucs:Demucs(Deep Extractor, MUlti-scale Convolutional network for Separation)是一种基于深度学习的语音分离模型,它使用了多尺度卷积神经网络,通过学习不同尺度上的特征来实现源信号的分离。 这些模型都在语音分离任务取得了很好的效果,并且不断有新的模型被提出。选择适合的模型应该根据具体的需求和数据特点进行评估和比较。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值