2.4神经网络优化之正则化

在提出正则化这个概念之前,我们先介绍过拟合现象。所谓过拟合就是所训练的模型仅仅适用于训练集,对于新的数据就不适用。那么如何解决过拟合呢?我们提出正则化方法,通过正则化方法可以有效解决过拟合
正则化就是在损失函数引入复杂度指标,利用给参数加权值,以弱化训练数据的噪声
使用正则化后,损失函数loss变成两部分
在这里插入图片描述
在图片中,我们看到如何在代码去实现求loss(w)
eg.生成一套数据集,随机产生300个按照正态分布的点[x0,x1]
标注Y_当X0^2 + X1^2 <2时,y_=1(为红),否则y_=0(为蓝)

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息  
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error   
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示 Error
BATCH_SIZE = 30
seed = 2
# 基于seed产生随机数
rdm = np.random.RandomState(seed)
# 随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
X = rdm.randn(300, 2)
# 从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
# 作为输入数据集的标签(正确答案)
Y_ = [int(x0 * x0 + x1 * x1 < 2) for (x0, x1) in X]
# 遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
# 对数据集X和标签Y进行shape整理,第一个元素为-1表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
X = np.vstack(X).reshape(-1, 2)
Y_ = np.vstack(Y_).reshape(-1, 1)
print(X)

print(Y_)

print(Y_c)

# 用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写)
plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c))
plt.show()


# 定义神经网络的输入、参数和输出,定义前向传播过程
def get_weight(shape, regularizer):
    w = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
    tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w


def get_bias(shape):
    b = tf.Variable(tf.constant(0.01, shape=shape))
    return b


x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))

w1 = get_weight([2, 11], 0.01)
b1 = get_bias([11])
y1 = tf.nn.relu(tf.matmul(x, w1) + b1)

w2 = get_weight([11, 1], 0.01)
b2 = get_bias([1])
y = tf.matmul(y1, w2) + b2

# 定义损失函数
loss_mse = tf.reduce_mean(tf.square(y - y_))
loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))

# 定义反向传播方法:不含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)

with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    STEPS = 40000
    for i in range(STEPS):
        start = (i * BATCH_SIZE) % 300
        end = start + BATCH_SIZE
        sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
        if i % 2000 == 0:
            loss_mse_v = sess.run(loss_mse, feed_dict={x: X, y_: Y_})
            print("After %d steps, loss is: %f" % (i, loss_mse_v))
    # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
    xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
    # 将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
    grid = np.c_[xx.ravel(), yy.ravel()]
    # 将网格坐标点喂入神经网络 ,probs为输出
    probs = sess.run(y, feed_dict={x: grid})
    # probs的shape调整成xx的样子
    probs = probs.reshape(xx.shape)
    print("w1:\n", sess.run(w1))

    print("b1:\n", sess.run(b1))

    print("w2:\n", sess.run(w2))

    print("b2:\n", sess.run(b2))


plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()
#定义反向传播,包含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    STEPS = 40000
    for i in range(STEPS):
        start = (i * BATCH_SIZE) % 300
        end = start + BATCH_SIZE
        sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
        if i % 2000 == 0:
            loss_mse_v = sess.run(loss_mse, feed_dict={x: X, y_: Y_})
            print("After %d steps, loss is: %f" % (i, loss_mse_v))
    # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
    xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
    # 将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
    grid = np.c_[xx.ravel(), yy.ravel()]
    # 将网格坐标点喂入神经网络 ,probs为输出
    probs = sess.run(y, feed_dict={x: grid})
    # probs的shape调整成xx的样子
    probs = probs.reshape(xx.shape)
    print("w1:\n", sess.run(w1))

    print("b1:\n", sess.run(b1))

    print("w2:\n", sess.run(w2))

    print("b2:\n", sess.run(b2))


plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()

得到的结果如下

在这里插入图片描述
图1
在这里插入图片描述
图2
在这里插入图片描述
图三
图1为随机的300个坐标点,图2为为使用正则化的效果模型,图3为使用正则化的效果模型
我们可以清楚看到正则化的效果
随笔:人类在经验的积累中学会将有害的“教训”与有益的“经验”区分开来。“教训”与“经验”都是从历史中学习而来的东西。我们把过去的事情分别称作“教训”与“经验”,包含着我们在当下对过去的人或事的评价,这种当下的评价对现实生活世界中的人之所以必不可少,是因为它包含着评价者对自己生活世界的理解和期待,因此成为一种连接过去与当下的现实问题思考。 ----《统治与教育》
从过去的事通过思考学到了一些或者说领悟了某些想法,也知道了该怎么去做最合适,但是当再次面临的时候,依然会做出不合适的行为

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值