矩阵的线性变换

矩阵的线性变换(不考虑平移)

绕坐标轴旋转

绕 x 轴 旋 转 = > R   x   ( θ ) = [ 1 0 0 0 c o s θ s i n θ 0 − s i n θ c o n θ ] 绕x轴旋转 => R~x~(θ) =\begin{bmatrix} 1 & 0 & 0 \\ 0 & cosθ & sinθ \\ 0 &-sinθ & conθ \end{bmatrix} x=>R x (θ)=1000cosθsinθ0sinθconθ
绕 y 轴 旋 转 = > R   y   ( θ ) = [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o n θ ] 绕y轴旋转 => R~y~(θ) =\begin{bmatrix} cosθ & 0 & -sinθ \\ 0 & 1 & 0 \\ sinθ & 0 & conθ \end{bmatrix} y=>R y (θ)=cosθ0sinθ010sinθ0conθ
绕 z 轴 旋 转 = > R   z   ( θ ) = [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ] 绕z轴旋转 => R~z~(θ) =\begin{bmatrix} cosθ & sinθ & 0 \\ -sinθ & cosθ & 0 \\ 0 & 0 & 1 \end{bmatrix} z=>R z (θ)=cosθsinθ0sinθcosθ0001

绕任意轴旋转

用单位向量n来描述旋转轴
绕 任 意 轴 旋 转 = > R   ( n , θ )   = [ n x 2 ( 1 − c o s θ ) + c o s θ n x n y ( 1 − c o s θ ) + n z s i n θ n x n z ( 1 − c o s θ ) − n y s i n θ n x n y ( 1 − c o s θ ) − n z s i n θ n y 2 ( 1 − c o s θ ) + c o s θ n y n z ( 1 − c o s θ ) + n x s i n θ n x n z ( 1 − c o s θ ) + n y s i n θ n y n z ( 1 − c o s θ ) − n x s i n θ n z 2 ( 1 − c o s θ ) + c o s θ ] 绕任意轴旋转 => R~(n,θ)~ =\begin{bmatrix} n_x^2(1-cos\theta)+cos\theta& n_xn_y(1-cos\theta)+n_zsin\theta & n_xn_z(1-cos\theta)-n_ysin\theta \\ n_xn_y(1-cos\theta)-n_zsin\theta & n_y^2(1-cos\theta)+cos\theta & n_yn_z(1-cos\theta)+n_xsin\theta \\ n_xn_z(1-cos\theta)+n_ysin\theta & n_yn_z(1-cos\theta)-n_xsin\theta & n_z^2(1-cos\theta)+cos\theta \end{bmatrix} =>R (n,θ) =nx2(1cosθ)+cosθnxny(1cosθ)nzsinθnxnz(1cosθ)+nysinθnxny(1cosθ)+nzsinθny2(1cosθ)+cosθnynz(1cosθ)nxsinθnxnz(1cosθ)nysinθnynz(1cosθ)+nxsinθnz2(1cosθ)+cosθ

沿坐标轴缩放

S ( k x , k y , k z ) = [ k x 0 0 0 k y 0 0 0 k z ] S(k_x,k_y,k_z) =\begin{bmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & k_z \end{bmatrix} S(kx,ky,kz)=kx000ky000kz

沿任意方向进行缩放

以单位向量n为缩放方向,k为缩放因子
S ( n , k ) = [ 1 + ( k − 1 ) n x 2 ( k − 1 ) n x n y ( k − 1 ) n x n z ( k − 1 ) n x n y 1 + ( k − 1 ) n y 2 ( k − 1 ) n y n z ( k − 1 ) n x n z ( k − 1 ) n z n y 1 + ( k − 1 ) n z 2 ] S(n,k) =\begin{bmatrix} 1+(k-1)n_x^2 & (k-1)n_xn_y & (k-1)n_xn_z \\ (k-1)n_xn_y & 1+(k-1)n_y^2 & (k-1)n_yn_z \\ (k-1)n_xn_z & (k-1)n_zn_y & 1+(k-1)n_z^2 \end{bmatrix} S(n,k)=1+(k1)nx2(k1)nxny(k1)nxnz(k1)nxny1+(k1)ny2(k1)nzny(k1)nxnz(k1)nynz1+(k1)nz2

正交投影

简单理解就是降维,它是一种平行投影
向 x y 平 面 投 影 P x y = [ 1 0 0 0 1 0 0 0 0 ] 向xy平面投影P_x\\_y=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} xyPxy=100010000
向 x z 平 面 投 影 P x z = [ 1 0 0 0 0 0 0 0 1 ] 向xz平面投影P_x\\_z=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0& 0 \\ 0 & 0 & 1 \end{bmatrix} xzPxz=100000001
向 y z 平 面 投 影 P y z = [ 0 0 0 0 1 0 0 0 1 ] 向yz平面投影P_y\\_z=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1& 0 \\ 0 & 0 & 1 \end{bmatrix} yzPyz=000010001
向 任 意 直 线 或 平 面 投 影 P n = [ 1 − n x 2 − n x n y − n x n z − n x n y 1 − n y 2 − n y n z − n x n z − n y n z 1 − n z 2 ] 向任意直线或平面投影P_n=\begin{bmatrix} 1-n_x^2 & -n_xn_y & -n_xn_z \\ -n_xn_y & 1-n_y^2& -n_yn_z \\ -n_xn_z & -n_yn_z & 1-n_z^2 \end{bmatrix} 线Pn=1nx2nxnynxnznxny1ny2nynznxnznynz1nz2

镜像

P n = [ 1 − 2 n x 2 − 2 n x n y − 2 n x n z − 2 n x n y 1 − 2 n y 2 − 2 n y n z − 2 n x n z − 2 n y n z 1 − 2 n z 2 ] P_n=\begin{bmatrix} 1-2n_x^2 & -2n_xn_y & -2n_xn_z \\ -2n_xn_y & 1-2n_y^2& -2n_yn_z \\ -2n_xn_z & -2n_yn_z & 1-2n_z^2 \end{bmatrix} Pn=12nx22nxny2nxnz2nxny12ny22nynz2nxnz2nynz12nz2

切变

x , y 坐 标 被 z 坐 标 切 变 = > H x y ( s , t ) = [ 1 0 0 0 1 0 s t 1 ] x,y坐标被z坐标切变 => H_x\\_y(s,t) =\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ s & t & 1 \end{bmatrix} x,yz=>Hxy(s,t)=10s01t001

x , z 坐 标 被 y 坐 标 切 变 = > H x z ( s , t ) = [ 1 0 0 s 1 t 0 0 1 ] x,z坐标被y坐标切变 => H_x\\_z(s,t) =\begin{bmatrix} 1 & 0 & 0 \\ s & 1 & t \\ 0 & 0 & 1 \end{bmatrix} x,zy=>Hxz(s,t)=1s00100t1

y , z 坐 标 被 x 坐 标 切 变 = > H y z ( s , t ) = [ 1 s t 0 1 0 0 0 1 ] y,z坐标被x坐标切变 => H_y\\_z(s,t) =\begin{bmatrix} 1 & s & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} y,zx=>Hyz(s,t)=100s10t01

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值