字数 1279,阅读大约需 7 分钟
OpenAI的深度研究功能(Deep Research)已经出了一段时间了,那Deep Research到底是什么?有啥厉害的?
别急,看完这篇你就全明白了!
一、OpenAI的Deep Research是什么
Deep Research是OpenAI集成于ChatGPT中的一项全新功能,其独特之处在于能够自主进行网络信息检索、整合多源信息、深度分析数据,并最终提供全面深入的解答。
但它是如何实现这一点的呢?它的能力边界和潜在的缺陷又是什么呢?
1. 关于Deep Research,你得知道这些
Deep Research的推出,标志着OpenAI在智能体上取得了重要进展。
该功能具备自适应学习、持续进化和动态调整的能力。它可以处理和分析来自网络的各类信息,包括文本、图像、PDF 文档等,其工作模式与人类研究人员高度相似。
对于搞金融、科研、政策、工程的专业人士来说,Deep Research可能会彻底改变他们的工作方式,帮他们省下大量上网查资料的时间。
不过,它也不是万能的。
2. Deep Research有啥缺点?
虽然Deep Research很牛,但它也有一些问题:
- • 信息准确性: 有时候,它给的信息可能不对,对于做研究来说其实挺关键的。
- • 信息可靠性甄别: 在区分可靠信息与不可靠信息方面存在一定困难。
- • 不确定性表达: 在应明确表达不确定性的情况下,可能无法准确传达。说人话就是明明它不确定,却不说出来。
- • 报告与引文格式: 生成的报告和引文在格式上可能存在瑕疵。
- • 可用性限制: 目前仅对
ChatGPT Pro用户
开放,且一个月限100次。 - • 计算资源需求: 由于其复杂的运算机制,Deep Research对计算资源的需求较高,速度可能比普通ChatGPT很多。
二、Deep Research的工作机制
Deep Research 最厉害的地方在于它的工作方式。它会把一个复杂的任务拆成一小块一小块的,然后一步一步解决,这与人类研究人员的思路高度一致。
在接收到任务指令后,Deep Research 首先进行任务理解和步骤规划,随后从多个在线信息源检索相关资料,整合不同来源的信息片段,最终基于分析结果生成研究报告。
Deep Research跟ChatGPT普通功能最大的区别就是,它能自己干活。
它会投入时间深入探索多个信息源,以构建全面深入的答案。对于那些需要深入理解和分析的复杂问题,Deep Research要好用很多。
三、Deep Research能做什么?
Deep Research如何赋能各领域的专业人士?该工具在多个领域具有广泛的应用前景,包括严谨的学术研究、快速高效的市场分析,以及复杂的数据处理等。
比如说,一个金融分析师可以用 Deep Research 来更快地收集市场数据,大幅缩短手动录入和数据整理的时间。
四、超越文本的性能表现
Deep Research有多厉害,看看这两个测试就知道了:在Humanity’s Last Exam和GAIA两项权威基准测试中,Deep Research的表现均显著优于同类竞争产品和以往的AI模型。
不过要强调的是,Deep Research虽然很厉害,但它离真正的通用人工智能(AGI)还差得远呢。它只是一个辅助工具,不能代替人类研究员。 这也说明,AI还有很长的路要走。
五、关于Deep Research的常见问题
1. Deep Research和普通ChatGPT有啥不一样?
普通ChatGPT主要依赖其预训练的知识库,而Deep Research具备主动检索、分析和整合网络信息
的能力,并能根据获取的信息进行动态调整。
2. Deep Research到底值不值得买Pro版?
如果你是经常需要做深入、准确、可靠研究
的人,那绝对值得一试,不过具体还是得看你的研究需求和使用频率。
3. Deep Research提供的引文和来源靠谱吗?
Deep Research会尽量提供准确的引文和来源。但是,格式上可能会有点小问题,而且它也可能分不清哪些是权威信息,哪些是谣言
。所以,对于它提供的回答,你还是得自己判断一下。
4. Deep Research有哪些缺点?
虽然这个功能大大降低了AI幻觉的问题,但它有时候还是会给出错误的信息或者不确定的信息,而且也分不清哪些是谣言与权威信息。此外,Deep Research还很费计算资源,所以用起来可能会觉得慢或者用不了,所以它还有很多需要改进的地方。