leetcode 215. Kth Largest Element in an Array

题目:

  

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

For example,
Given [3,2,1,5,6,4] and k = 2, return 5.

Note: 
You may assume k is always valid, 1 ≤ k ≤ array's length.

我的思路主要是分治方法,也就是快排的思路。不过在这里只需要检查一侧就可以,不需要像快排一样需要对中间元素的两侧进行排序。所以时间复杂度应该是log(n),下面是具体代码:

class Solution {
public:
    int partition(vector<int>&nums,int start,int end)
    {
            if(start == end)return start;
            int flag = nums[start];
            
            int i=start-1;
            int j;
            for(j = start+1;j<=end;++j){
                if(nums[j] >= flag){
                    ++i;
                    nums[i] = nums[j];
                    nums[j] = nums[i+1];
                }
            }
            nums[i+1] = flag;
            return (i+1);
    }
    
    int findKthLargest(vector<int>& nums, int k) {

        int size = nums.size();
        int low = 0;
        int high = size-1;
        if(k>size)return -1;
        if(size == 1)return nums[0];
       while(true){
            int p = partition(nums,low,high);
            
            if((p-low)+1 ==  k)return nums[p];
            
            else if(k - 1 > (p-low) ){
                k = k - (p-low) - 1;
                low = p+1;
            }
            
            else {
                high = p-1;
            }
        }
};

看一下计算时间,好慢!!

然后我就想试一下用STL里面的sort函数偷一下懒,顺便比较一下两者的计算时间。用STL函数的代码如下,非常简单

class Solution {
public:    
    int findKthLargest(vector<int>& nums, int k) {

        int size = nums.size();
        int low = 0;
        int high = size-1;
        if(k>size)return -1;
        if(size == 1)return nums[0];
        sort(nums.begin(),nums.end());
        return nums[size-k];
    }
};
看一下运行时间


              比自己写的要快好多。没想到别人排序后的算法比自己自然为的log(n)算法还要快,简直想不明白,,还有,难道大家都这么懒?!=。=。不过唯一可以知道的一件事情是:果然STL大法好。这个疑问留给以后读STL源码! 打算把这个放在了解c++ template之后进行。加油!
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值