2020张宇1000题【好题收集】【第九章:级数】

经典收敛级数

①:大名鼎鼎的自然数平方倒数和

另外的方法是用傅里叶级数来求的,比如下面的9.70题
ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + . . . = ∑ n = 1 ∞ 1 n 2 = π 2 6 \zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6} ζ(2)=121+221+321+...=n=1n21=6π2
是从这个视频里面学到的:mathologer 的视频
我觉得他们做的这种可视化数学真的做得好好呀,目前我所知道的就是 3blue1brownmathologer 这两位大佬在做,真的特别牛逼,什么希尔伯特曲线用做声音可视化,勾股数可视化 and so on,太吊啦~

这个式子把 s i n x sinx sinx写成无穷乘积展开式然后在与麦克劳林展开对比系数得到的
s i n x = x ( 1 − x 2 ( π ) 2 ) ( 1 − x 2 ( 2 π ) 2 ) ( 1 − x 2 ( 2 π ) 2 ) ( 1 − x 2 ( 4 π ) 2 ) . . . . sinx=x(1-\frac{x^2}{(\pi)^2})(1-\frac{x^2}{(2\pi)^2})(1-\frac{x^2}{(2\pi)^2})(1-\frac{x^2}{(4\pi)^2}).... sinx=x(1(π)2x2)(1(2π)2x2)(1(2π)2x2)(1(4π)2x2)....

同理还能得到
ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + . . . = ∑ n = 1 ∞ 1 n 4 = π 4 90 \zeta(4)=\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}+...=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90} ζ(4)=141+241+341+...=n=1n41=90π4
这个我没懂怎么对比系数得到的
弹幕上有同学说是 ζ ( 4 ) = ζ 2 ( 2 ) − 2 ζ ( 2 , 2 ) = ( π 2 6 ) 2 − 2 ⋅ π 4 120 \zeta(4)=\zeta^2(2)-2\zeta(2,2)=(\frac{\pi^2}{6})^2-2\cdot\frac{\pi^4}{120} ζ(4)=ζ2(2)2ζ(2,2)=(6π2)22120π4来的,但是没懂 ζ ( 2 , 2 ) \zeta(2,2) ζ(2,2)是什么东西

然后由上面那个式子令 x = π 2 x=\frac{\pi}{2} x=2π就能得到沃利斯公式(Wallis Product)

s i n ( π 2 ) = 1 = π 2 ⋅ 1 ⋅ 3 2 2 ⋅ 3 ⋅ 5 4 2 . . . . sin(\frac{\pi}{2})=1=\frac{\pi}{2}\cdot\frac{1\cdot3}{2^2}\cdot\frac{3\cdot5}{4^2}.... sin(2π)=1=2π22134235....

扩展

1 1 2 + 1 3 2 + 1 5 2 + . . . = π 2 8 \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+...=\frac{\pi^2}{8} 121+321+521+...=8π2
1 2 2 + 1 4 2 + 1 6 2 + . . . = π 2 24 \frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...=\frac{\pi^2}{24} 221+421+621+...=24π2
1 1 2 − 1 2 2 + 1 3 2 − 1 4 2 + 1 5 2 − 1 6 2 + . . . = ( 1 1 2 + 1 3 2 + 1 5 2 + . . . ) − ( 1 2 2 + 1 4 2 + 1 6 2 + . . . ) = π 2 12 \frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\frac{1}{5^2}-\frac{1}{6^2}+...=(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+...)-(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...)=\frac{\pi^2}{12} 121221+321421+521621+...=(121+321+521+...)(221+421+621+...)=12π2

②: ∑ n = 1 ∞ 1 n ! = e − 1 \sum_{n=1}^{\infty}\frac{1}{n!}=e-1 n=1n!1=e1

S n = 1 1 ! + 1 2 ! + 1 3 ! + . . . + 1 n ! ≤ 1 + 1 1 × 2 + 1 2 × 3 + . . . + 1 ( n − 1 ) × n 然 后 裂 项 = 1 + 1 − + 1 n < 2 S_n=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}\leq1+\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{(n-1)\times n}然后裂项=1+1-+\frac{1}{n}<2 Sn=1!1+2!1+3!1+...+n!11+1×21+2×31+...+(n1)×n1=1+1+n1<2
∴ S n < 2 收 敛 \therefore S_n<2收敛 Sn<2
事 实 上 这 个 就 是 e x 的 泰 勒 展 开 , 然 后 令 x = 1 在 减 去 第 0 项 事实上这个就是e^x的泰勒展开,然后令x=1在减去第0项 ex,x=10

③:

1 − 1 3 + 1 5 − 1 7 + 1 9 . . . = π 4 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}...=\frac{\pi}{4} 131+5171+91...=4π
其实这个就是 a r c t a n x arctanx arctanx展开令 x = 1 x=1 x=1

积分判别法【p级数】

就 是 说 : ∑ n = 1 ∞ f ( n ) 与 ∫ c ∞ f ( x ) d x 的 敛 散 性 是 相 同 的 就是说:\sum_{n=1}^{\infty}f(n)与\int_c^{\infty}f(x)dx的敛散性是相同的 :n=1f(n)cf(x)dx
一共有两种,并且结论都是: { 发 散 , p ≤ 1 收 敛 , p > 1 \left\{\begin{matrix} 发散,p\leq1\\ \\ 收敛,p>1 \end{matrix}\right. ,p1,p>1

①:

∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1

∑ n = 1 ∞ 1 n ( l n   n ) p \sum_{n=1}^{\infty}\frac{1}{n(ln\ n)^p} n=1n(ln n)p1
经典的调和级数 1 n \frac{1}{n} n1以及 1 n l n   n \frac{1}{nln\ n} nln n1就是当 p = 1 p=1 p=1的时候,因此都是发散的

一些级数收敛的结论

①: 如 果 正 项 级 数 u n 收 敛 , 那 么 u n 2 也 一 定 收 敛 , 反 过 来 不 一 定 如果正项级数u_n收敛,那么u_n^2也一定收敛,反过来不一定 un,un2,
这是因为 lim ⁡ n → ∞ u n 2 u n = lim ⁡ n → ∞ u n = 0 , \lim_{n\to\infty}\frac{u_n^2}{u_n}=\lim_{n\to\infty}u_n=0, limnunun2=limnun=0说明 u n 2 在 某 一 项 起 < u n u_n^2在某一项起<u_n un2<un,大的都收敛,小的就收敛
至于为啥必须要正项级数还没懂

②: 如 果 ∑ n = 1 ∞ u n 收 敛 , 能 推 出 的 结 论 : 如果\sum_{n=1}^{\infty}u_n收敛,能推出的结论: n=1un
∑ n = 1 ∞ u n 收 敛 ⇒ { ∑ n = 1 ∞ ( u n + u n + 1 ) , 收 敛 级 数 任 意 加 括 号 得 到 的 新 级 数 仍 然 收 敛 ∑ n = 1 ∞ ( u n − u n + 1 ) , 收 敛 级 数 任 意 两 项 之 差 得 到 的 新 级 数 仍 然 收 敛 \sum_{n=1}^{\infty}u_n收敛\Rightarrow \left\{\begin{array}{ll} \sum_{n=1}^{\infty}(u_n+u_{n+1}),收敛级数任意加括号得到的新级数仍然收敛\\ \\ \\\sum_{n=1}^{\infty}(u_n-u_{n+1}),收敛级数任意两项之差得到的新级数仍然收敛 \\ \end{array}\right. n=1unn=1(un+un+1),n=1(unun+1),

∑ n = 1 ∞ u n 收 敛 ⇒ 不 一 定 收 敛 的 有 : { ∑ n = 1 ∞ ∣ u n ∣ , 反 例 : 交 错 调 和 级 数 ∑ n = 1 ∞ u n 2 , 反 例 : ∑ n = 1 ∞ ( − 1 ) n 1 n ∑ n = 1 ∞ ( − 1 ) n u n , 反 例 : ∑ n = 1 ∞ ( − 1 ) n 1 n ∑ n = 1 ∞ u n n , 反 例 : ∑ n = 2 ∞ 1 l n   n , 卧 槽 ∑ n = 2 ∞ 1 n l n   n 是 发 散 的 啊 ? ∑ n = 1 ∞ u n u n + 1 , 反 例 : ∑ n = 1 ∞ ( − 1 ) n 1 n , u n u n + 1 = − 1 n ( n + 1 ) , 而 1 n ( n + 1 ) > 1 n + 1 所 以 发 散 ∑ n = 1 ∞ ( u 2 n − 1 − u 2 n ) , 注 意 这 个 是 奇 数 减 偶 数 , 跟 上 面 相 邻 两 项 相 减 不 同 , 反 例 就 是 交 错 调 和 级 数 ∑ n = 1 ∞ u 2 n − 1 和 ∑ n = 1 ∞ u 2 n , 就 是 单 独 的 奇 数 项 或 偶 数 项 , 反 例 也 是 交 错 调 和 级 数 \sum_{n=1}^{\infty}u_n收敛\Rightarrow不一定收敛的有: \left\{\begin{array}{ll} \sum_{n=1}^{\infty}|u_n|,反例:交错调和级数 \\ \\ \sum_{n=1}^{\infty}u_n^2,反例:\sum_{n=1}^{\infty}(-1)^n\frac{1}{\sqrt{n}} \\ \\ \sum_{n=1}^{\infty}(-1)^nu_n,反例:\sum_{n=1}^{\infty}(-1)^n\frac{1}{n} \\ \\ \sum_{n=1}^{\infty}\frac{u_n}{n},反例:\sum_{n=2}^{\infty}\frac{1}{ln\ n},卧槽\sum_{n=2}^{\infty}\frac{1}{nln\ n}是发散的啊? \\ \\ \sum_{n=1}^{\infty}u_nu_{n+1},反例:\sum_{n=1}^{\infty}(-1)^n\frac{1}{\sqrt{n}},u_nu_{n+1}=-\frac{1}{\sqrt{n(n+1)}},而\frac{1}{\sqrt{n(n+1)}}>\frac{1}{n+1}所以发散 \\ \\ \sum_{n=1}^{\infty}(u_{2n-1}-u_{2n}),注意这个是奇数减偶数,跟上面相邻两项相减不同,反例就是交错调和级数 \\ \\\sum_{n=1}^{\infty}u_{2n-1}和\sum_{n=1}^{\infty}u_{2n},就是单独的奇数项或偶数项,反例也是交错调和级数 \end{array}\right. n=1unn=1un,n=1un2,n=1(1)nn 1n=1(1)nun,n=1(1)nn1n=1nun,n=2ln n1,n=2nln n1n=1unun+1,n=1(1)nn 1,unun+1=n(n+1) 1,n(n+1) 1>n+11n=1(u2n1u2n),,,n=1u2n1n=1u2n,,
以上前几个都是阔以强行令他 = 1 n , =\frac{1}{n}, =n1,然后再把 u n u_n un反解出来
这里新遇到一个级数又丰富我的知识体系T_T
∑ n = 1 ∞ 1 n l n   n 是 发 散 的 ? \sum_{n=1}^{\infty}\frac{1}{nln\ n}是发散的? n=1nln n1
积分判别法???还有这东西T_T

另外的几个结论
{ ∑ n = 1 ∞ ∣ u n ∣ 收 敛 ⇒ ∑ n = 1 ∞ u n 收 敛 , 很 好 理 解 , 加 了 绝 对 值 都 收 敛 , 没 加 绝 对 值 还 阔 能 有 负 数 什 么 的 就 更 收 敛 了 ∑ n = 1 ∞ u n 发 散 ⇒ ∑ n = 1 ∞ ∣ u n ∣ 发 散 , 跟 上 面 一 样 ∑ n = 1 ∞ u n 2 收 敛 , ∑ n = 1 ∞ ∣ u n n ∣ 收 敛 , ∵ ∣ u n n ∣ ≤ 1 2 ( u n 2 + 1 n 2 ) \left\{\begin{array}{ll} \sum_{n=1}^{\infty}|u_n|收敛\Rightarrow \sum_{n=1}^{\infty}u_n收敛,很好理解,加了绝对值都收敛,没加绝对值还阔能有负数什么的就更收敛了 \\ \\\sum_{n=1}^{\infty}u_n发散\Rightarrow \sum_{n=1}^{\infty}|u_n|发散,跟上面一样 \\ \\\sum_{n=1}^{\infty}u_n^2收敛,\sum_{n=1}^{\infty}|\frac{u_n}{n}|收敛,\because |\frac{u_n}{n}|\leq\frac{1}{2}(u_n^2+\frac{1}{n^2}) \end{array}\right. n=1unn=1un,,,n=1unn=1un,n=1un2,n=1nun,nun21(un2+n21)

1000题

9.2(举反例)

正 项 级 数 ∑ n = 1 ∞ a n 收 敛 , ∑ n = 1 ∞ b n 发 散 , 则 正 确 的 有 哪 些 ? 正项级数\sum_{n=1}^{\infty}a_n收敛,\sum_{n=1}^{\infty}b_n发散,则正确的有哪些? n=1an,n=1bn,
A. ∑ n = 1 ∞ a n b n 必 收 敛 \sum_{n=1}^{\infty}a_nb_n必收敛 n=1anbn
B. ∑ n = 1 ∞ a n b n 必 发 散 \sum_{n=1}^{\infty}a_nb_n必发散 n=1anbn
C. ∑ n = 1 ∞ a n 2 必 收 敛 \sum_{n=1}^{\infty}a_n^2必收敛 n=1an2
D. ∑ n = 1 ∞ b n 2 必 发 散 \sum_{n=1}^{\infty}b_n^2必发散 n=1bn2
先直接看(C),说了是正项级数的,因此平方一哈,肯定还是正项且趋向0的,所以肯定对

在看A、B,阔以找一个收敛级数 1 n 2 \frac{1}{n^2} n21,他是能拆成一个发散与一个收敛相乘的,比如 n 和 1 n 3 n和\frac{1}{n^3} nn31,再找一个发散级数 1 n \frac{1}{n} n1,也能拆: n 和 1 n 3 2 \sqrt{n}和\frac{1}{n^{\frac{3}{2}}} n n231

9.3【正项级数平方收敛,乘积是否收敛】

正 项 级 数 ∑ n = 1 ∞ a n 2 , ∑ n = 1 ∞ b n 2 都 收 敛 时 , ∑ n = 1 ∞ a n b n 是 否 收 敛 ? 正项级数\sum_{n=1}^{\infty}a_n^2,\sum_{n=1}^{\infty}b_n^2都收敛时,\sum_{n=1}^{\infty}a_nb_n是否收敛? n=1an2,n=1bn2,n=1anbn
我以为也是举反例来排除,结果居然是用均值不等式来证明的T_T
也是哈,这个还是很容易看出来的,但是我没看出来
a n b n = a n 2 b n 2 ≤ a n 2 + b n 2 2 a_nb_n=\sqrt{a_n^2b_n^2}\leq\frac{a_n^2+b_n^2}{2} anbn=an2bn2 2an2+bn2所以收敛

9.4

(2)【放缩】

判断收敛性
( 2 ) ∑ n = 1 ∞ ∫ 0 1 n x 1 + x 2 d x (2)\sum_{n=1}^{\infty}\int_0^{\frac{1}{n}}\frac{\sqrt{x}}{1+x^2}dx (2)n=10n11+x2x dx
这个积分感觉有点不好积分呀
忘了阔以放缩了
x 1 + x 2 < x \frac{\sqrt{x}}{1+x^2}<\sqrt{x} 1+x2x <x 然后就好积分了,而且积出来是收敛的

关键是这种我怎么知道放缩成什么样子后的是收敛的喃?这个就是考验水平的地方了,多做题T_T

这道题阔以这样想,上限是 1 n \frac{1}{n} n1,所以要积分后幂是正的,这样n才能到分母,然后就可能收敛

(3)【立方差公式分子有理化】

( 3 ) ∑ n = 1 ∞ n + 1 3 − n 3 (3)\sum_{n=1}^{\infty}\sqrt[3]{n+1}-\sqrt[3]{n} (3)n=13n+1 3n
这题如果是2次方根的话我一眼就知道要分子有理化,但是这个是三次方根的哇,好像同时乘上 ( n + 1 3 + n 3 ) (\sqrt[3]{n+1}+\sqrt[3]{n}) (3n+1 +3n )的话,幂只会变成 2 3 \frac{2}{3} 32,再乘变成 4 3 \frac{4}{3} 34,这样是消不掉的得哇
看答案好发现他是乘的3项,我突然反应过来,好像是那个什么立方差公式哇
( a − b ) = ( a − b ) ( a 2 + a b + b 2 ) ( a 2 + a b + b 2 ) = ( a 3 − b 3 ) ( a 2 + a b + b 2 ) (a-b)=\frac{(a-b)(a^2+ab+b^2)}{(a^2+ab+b^2)}=\frac{(a^3-b^3)}{(a^2+ab+b^2)} (ab)=(a2+ab+b2)(ab)(a2+ab+b2)=(a2+ab+b2)(a3b3)
然后就好放缩了
然后我们能看到分母大概是 2 3 \frac{2}{3} 32次方小于1的,大概是发散的,所以要构造大于来放缩

9.6【放缩】

u n = ∫ 0 1 x ( 1 − x ) s i n 2 n x d x , 讨 论 ∑ n = 1 ∞ u n 的 敛 散 性 u_n=\int_0^1x(1-x)sin^{2n}xdx,讨论\sum_{n=1}^{\infty}u_n的敛散性 un=01x(1x)sin2nxdx,n=1un
我放缩放多了QAQ
我想的是 x < 1 , ( 1 − x ) 也 小 于 1 , s i n x < x x<1,(1-x)也小于1,sinx<x x<1,(1x)1,sinx<x,所以就放缩成了 x 2 n x^{2n} x2n,积分出来分母是1次方的,不收敛啊T_T

这道题只用放缩sinx就已经都是多项式函数了
u n < ∫ 0 1 x ( 1 − x ) x 2 n d x = 1 2 n + 2 − 1 2 n + 3 = 1 ( 2 n + 2 ) ( 2 n + 3 ) < 1 4 n 2 u_n<\int_0^1x(1-x)x^{2n}dx=\frac{1}{2n+2}-\frac{1}{2n+3}=\frac{1}{(2n+2)(2n+3)}<\frac{1}{4n^2} un<01x(1x)x2ndx=2n+212n+31=(2n+2)(2n+3)1<4n21
这样分母就是2次方了,就是收敛的了

9.7(打星)【坑!!!】

设 0 ≤ u n ≤ 1 n , 则 下 列 级 数 一 定 收 敛 的 是 设0\leq u_n\leq\frac{1}{n},则下列级数一定收敛的是 0unn1,
A. ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un

B. ∑ n = 1 ∞ ( − 1 ) n u n \sum_{n=1}^{\infty}(-1)^nu_n n=1(1)nun

C. ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}\sqrt{u_n} n=1un

D. ∑ n = 1 ∞ ( − 1 ) u n 2 \sum_{n=1}^{\infty}(-1)u^2_n n=1(1)un2

这题我一看就排除了AC,因为就是调和级数的时候就不对
D是肯定对的
但是这个B,感觉也是对的啊,分母比一次方大,那就是收敛的p级数啊,怎么想都收敛,而且还满足交错级数 单调不增且趋向0 的条件啊
然后答案给的反例是:
u n = ∑ n = 1 ∞ ( − 1 ) n + 1 2 n u_n=\sum_{n=1}^{\infty}\frac{(-1)^n+1}{2n} un=n=12n(

  • 5
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值