2017版张宇1000题【题目收集】

本文整理了张宇1000题中的部分高数和线性代数难题,涉及极限、积分、微分方程等多个知识点。通过详细的解题过程,帮助考生深入理解并掌握考研数学中的重点和难点。其中包括夹逼法则、洛必达法则、定积分的应用等常见问题,适合备考研究生数学的学子参考学习。
摘要由CSDN通过智能技术生成

高数部分

1.30

求 f ( x ) = lim ⁡ x → ∞ 1 + ( 2 x ) n + x 2 n n 的 表 达 式 求f(x)=\lim_{x\to \infty} \sqrt[n]{1+(2x)^n+x^{2n}}的表达式 f(x)=xlimn1+(2x)n+x2n
这题据说是什么苏联的数学竞赛题过来的T_T
①:当 0 &lt; x &lt; 1 2 时 0&lt;x&lt;\frac{1}{2}时 0<x<21
{ 0 &lt; 2 x &lt; 1 0 &lt; x 2 &lt; 1 \left\{\begin{matrix} 0&lt;2x&lt;1\\ \\ 0&lt;x^2&lt;1 \end{matrix}\right. 0<2x<10<x2<1
所以 1 + 0 + 0 n &lt; 1 + ( 2 x ) n + x 2 n n &lt; 1 + 1 + 1 n \sqrt[n]{1+0+0}&lt;\sqrt[n]{1+(2x)^n+x^{2n}}&lt;\sqrt[n]{1+1+1} n1+0+0 <n1+(2x)n+x2n <n1+1+1

②当 1 2 &lt; x &lt; 2 时 \frac{1}{2}&lt;x&lt;2时 21<x<2

∵ 1 2 &lt; x \because \frac{1}{2}&lt;x 21<x

∴ { 1 &lt; 2 x 1 4 &lt; x 2 \therefore \left\{\begin{matrix} 1&lt;2x\\ \\ \frac{1}{4}&lt;x^2 \end{matrix}\right. 1<2x41<x2

所以 1 + 1 n + ( 1 4 ) n n &lt; 1 + ( 2 x ) n + x 2 n n \sqrt[n]{1+1^n+(\frac{1}{4})^n}&lt;\sqrt[n]{1+(2x)^n+x^{2n}} n1+1n+(41)n <n1+(2x)n+x2n

∵ x &lt; 2 \because x&lt;2 x<2

∴ { 1 &lt; 2 x x 2 &lt; 2 x ⇒ { 1 n &lt; ( 2 x ) n ( x 2 ) n &lt; ( 2 x ) n \therefore \left\{\begin{matrix} 1&lt;2x\\ \\ x^2&lt;2x \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 1^n&lt;(2x)^n\\ \\ (x^2)^n&lt;(2x)^n \end{matrix}\right. 1<2xx2<2x1n<(2x)n(x2)n<(2x)n

所以 1 + ( 2 x ) n + x 2 n n &lt; ( 2 x ) n + ( 2 x ) n + ( 2 x ) n n = 2 x 3 n \sqrt[n]{1+(2x)^n+x^{2n}}&lt;\sqrt[n]{(2x)^n+(2x)^n+(2x)^n}=2x\sqrt[n]{3} n1+(2x)n+x2n <n(2x)n+(2x)n+(2x)n =2xn3

③当 x &gt; 2 时 x&gt;2时 x>2

∴ { 0 &lt; 1 &lt; x 2 0 &lt; 2 x &lt; x 2 \therefore \left\{\begin{matrix} 0&lt;1&lt;x^2\\ \\ 0&lt;2x&lt;x^2 \end{matrix}\right. 0<1<x20<2x<x2

所以 0 n + 0 n + x 2 n n &lt; 1 + ( 2 x ) n + x 2 n n &lt; x 2 n + x 2 n + x 2 n n = x 2 3 n \sqrt[n]{0^n+0^n+x^{2n}}&lt;\sqrt[n]{1+(2x)^n+x^{2n}}&lt;\sqrt[n]{x^{2n}+x^{2n}+x^{2n}}=x^2\sqrt[n]{3} n0n+0n+x2n <n1+(2x)n+x2n <nx2n+x2n+x2n =x2n3

1.48

求 lim ⁡ x → 0 ( 1 + x ) 1 x − ( 1 + 2 x ) 1 2 x s i n x 求\lim_{x\to 0}\frac{(1+x)^{\frac{1}{x}}-(1+2x)^{\frac{1}{2x}}}{sinx} x0limsinx(1+x)x1(1+2x)2x1
我是这样做的:
原式 = lim ⁡ x → 0 e 1 x l n ( 1 + x ) − e 1 2 x l n ( 1 + 2 x ) x =\lim_{x\to 0}\frac{ e^{\frac{1}{x}ln(1+x)}-e^{\frac{1}{2x}ln(1+2x)} }{x} =limx0xex1ln(1+x)e2x1ln(1+2x)
因为 e f ( x ) = 1 + f ( x ) + O ( f ( x ) ) e^{f(x)}=1+f(x)+O(f(x)) ef(x)=1+f(x)+O(f(x))
所以直接展开得:
= lim ⁡ x → 0 1 x l n ( 1 + x ) − 1 2 x l n ( 1 + 2 x ) x = 1 2 x ⋅ [ 2 l n ( 1 + x ) − l n ( 1 + 2 x ) ] x =\lim_{x\to 0}\frac{ \frac{1}{x}ln(1+x)-\frac{1}{2x}ln(1+2x) }{x}=\frac{\frac{1}{2x}\cdot[ 2ln(1+x)-ln(1+2x)] }{x} =limx0xx1ln(1+x)2x1ln(1+2x)=x2x1[2ln(1+x)ln(1+2x)]
= lim ⁡ x → 0 2 l n ( 1 + x ) − l n ( 1 + 2 x ) 2 x 2 =\lim_{x\to 0}\frac{ 2ln(1+x)-ln(1+2x) }{2x^2} =limx02x22ln(1+x)ln(1+2x)
然后洛必达
= 1 2 =\frac{1}{2} =21
我这里错的原因应该是展开之后的 1 2 x ⋅ [ 2 l n ( 1 + x ) − l n ( 1 + 2 x ) ] \frac{1}{2x}\cdot[ 2ln(1+x)-ln(1+2x)] 2x1[2ln(1+x)ln(1+2x)]中的 1 2 x \frac{1}{2x} 2x1本应该是属于分子私有的,但是现在却是属于大家的了,所以有问题
我觉得应该是   1 x l n ( 1 + x ) \ \frac{1}{x}ln(1+x)  x1ln(1+x) x = 0 x=0 x=0的时候没有定义,所以不能展开
类似的,比如:
lim ⁡ x → 0 x [ e 1 x − e 1 2 x ] \lim_{x\to 0}x[e^{\frac{1}{x}}-e^{\frac{1}{2x}}] x0limx[ex1e2x1]
求这个极限,如果展开会得出错误答案 1 2 \frac{1}{2} 21

1.55

求 I = lim ⁡ n → ∞ ( s i n π n n + 1 + s i n 2 π n n + 1 2 + s i n 3 π n n + 1 3 + . . . + + s i n n π n n + 1 n ) 求I=\lim_{n\to \infty}(\frac{sin\frac{\pi}{n}}{n+1}+\frac{sin\frac{2\pi}{n}}{n+\frac{1}{2}}+\frac{sin\frac{3\pi}{n}}{n+\frac{1}{3}}+...++\frac{sin\frac{n\pi}{n}}{n+\frac{1}{n}}) I=nlim(n+1sinnπ+n+21sinn2π+n+31sinn3π+...++n+n1sinnnπ)
用夹逼找出 I 1 &lt; I &lt; I 2 I_1&lt;I&lt;I_2 I1<I<I2,然后 I 1 , I 2 I_1,I_2 I1,I2还要用定义转换成定积分来算
I = ∑ i = 1 n s i n i n π n + 1 i I=\sum_{i=1}^n\frac{sin\frac{i}{n}\pi}{n+\frac{1}{i}} I=i=1nn+i1

本书精心命制和整合了大约1000道考研数学复习的题目,其主要来源是: (1)与考研数学命密切相关的重要资料.这里包括考研数学命前的全国征、部分考研命的备考(所谓考研数学B卷考)、命人退下来以后命制的题目、某些全国大学数学教学基地的考试库等,这些一般会综合了多个知识点,有一定的难度和区分度. (2)前苏联、全国、各省市大学生数学竞赛试的改编.对经典的大学数学竞赛题如何进行改编,使其适合考研的风格和特点,这既是对未来考的预测(因为这些竞赛题中有很多题目是“潜在的考试”),也是本书的一大特色.试改编是颇费一番周折的,本书中一些重要题目后的“注”,看似外之话,但是字斟句酌、涵义深刻,请读者仔细品味,必会有所收获.当然,基于竞赛基础,这些一般也会是综合,难度高、区分度大. (3)作者在一线教学中编写和积累的经典题目.这里,有些题目考查的是非常重要的基础知识,有些题目考查的是学生易错的、易混淆的知识,还有些题目,本应是在课堂上讲授给学生的,但是无奈于课堂时间有限,很多精彩的好没有机会在课上详细解释,也将此选编到本书中,供学生课后巩固所学、增长见识之用.同时也给没有上我的课程的读者提供一个有价值的习资料.这里的题目除了有一定难度的综合外,还有些简单,难度不高,但对学生的区分是明显的.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值