张宇1000题线性代数 第五章 线性方程组

目录

B B B

6.已知线性方程组 { b x 1 − a x 2 = − 2 a b , − 2 c x 2 + 3 b x 3 = b c , c x 1 + a x 3 = 0 , \begin{cases}bx_1-ax_2=-2ab,\\-2cx_2+3bx_3=bc,\\cx_1+ax_3=0,\end{cases} bx1ax2=2ab,2cx2+3bx3=bc,cx1+ax3=0,则(  )。
( A ) (A) (A) a , b , c a,b,c a,b,c为任意实数时,方程组均有解;
( B ) (B) (B) a = 0 a=0 a=0时,方程组无解;
( C ) (C) (C) b = 0 b=0 b=0时,方程组无解;
( D ) (D) (D) c = 0 c=0 c=0时,方程组无解。

  当 a = 0 a=0 a=0 b = 0 b=0 b=0 c = 0 c=0 c=0时,方程组均有解,且系数行列式 ∣ A ∣ = ∣ b − a 0 0 − 2 c 3 b c 0 a ∣ = − 5 a b c |\bm{A}|=\begin{vmatrix}b&-a&0\\0&-2c&3b\\c&0&a\end{vmatrix}=-5abc A=b0ca2c003ba=5abc
  当 a b c ≠ 0 abc\ne0 abc=0时,由克拉默法则知,方程组有解,且当 a b c = 0 abc=0 abc=0时方程组也有解,故 a , b , c a,b,c a,b,c为任意实数时,方程组均有解。(这道题主要利用了克拉默法则求解

11.设线性方程组 { x 1 + x 2 + a x 3 = 0 , x 1 + 2 x 2 + x 3 = 0 , x 1 − x 2 + a x 3 = 0 \begin{cases}x_1+x_2+ax_3=0,\\x_1+2x_2+x_3=0,\\x_1-x_2+ax_3=0\end{cases} x1+x2+ax3=0,x1+2x2+x3=0,x1x2+ax3=0与方程 x 1 − 2 x 2 + 3 x 3 = 1 x_1-2x_2+3x_3=1 x12x2+3x3=1有公共解,则 a = a= a=______。

  由题设,齐次方程组 { x 1 + x 2 + a x 3 = 0 , x 1 + 2 x 2 + x 3 = 0 , x 1 − x 2 + a x 3 = 0 \begin{cases}x_1+x_2+ax_3=0,\\x_1+2x_2+x_3=0,\\x_1-x_2+ax_3=0\end{cases} x1+x2+ax3=0,x1+2x2+x3=0,x1x2+ax3=0与方程 x 1 − 2 x 2 + 3 x 3 = 1 x_1-2x_2+3x_3=1 x12x2+3x3=1有公共解,对于非齐次线性方程而言,公共解不可能为零解,因此,该齐次方程组也必有非零解,因此,方程组的系数矩阵的秩小于 3 3 3,也即系数行列式为零,即 ∣ 1 1 a 1 2 1 1 − 1 a ∣ = 2 ( 1 − a ) = 0 \begin{vmatrix}1&1&a\\1&2&1\\1&-1&a\end{vmatrix}=2(1-a)=0 111121a1a=2(1a)=0,解得 a = 1 a=1 a=1。(这道题主要利用了矩阵的秩求解

13.设线性方程组 A 3 × 4 x = b \bm{A}_{3\times4}\bm{x}=\bm{b} A3×4x=b有唯一解 ξ 1 = [ 1 , − 1 , 2 ] T \bm{\xi}_1=[1,-1,2]^\mathrm{T} ξ1=[1,1,2]T α \bm{\alpha} α 3 3 3维列向量,方程 [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b有特解 η 1 = [ 1 , − 2 , 1 , 3 ] T \bm{\eta}_1=[1,-2,1,3]^\mathrm{T} η1=[1,2,1,3]T,则方程组 [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b的通解是______。

   A x = b \bm{Ax}=\bm{b} Ax=b有唯一解 ⇒ r ( A ) = 3 ⇒ r ( [ A , α ] ) = 3 ⇒ r ( [ A , α ] ) = r ( [ A , α ∣ b ] ) = 3 \Rightarrow r(\bm{A})=3\Rightarrow r([\bm{A},\bm{\alpha}])=3\Rightarrow r([\bm{A},\bm{\alpha}])=r([\bm{A},\bm{\alpha}|\bm{b}])=3 r(A)=3r([A,α])=3r([A,α])=r([A,αb])=3
  方程组 [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b的通解形式为 k ξ + η k\bm{\xi}+\bm{\eta} kξ+η,其中 k ξ k\bm{\xi} kξ [ A , α ] x = 0 [\bm{A},\bm{\alpha}]\bm{x}=\bm{0} [A,α]x=0的通解, η \bm{\eta} η [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b的特解。
  已知 [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b有特解 η 1 = [ 1 , − 2 , 1 , 3 ] T \bm{\eta}_1=[1,-2,1,3]^\mathrm{T} η1=[1,2,1,3]T。另一个特解可取 η 2 = [ 1 , − 2 , 2 , 0 ] T \bm{\eta}_2=[1,-2,2,0]^\mathrm{T} η2=[1,2,2,0]T
  故 [ A , α ] x = b [\bm{A},\bm{\alpha}]\bm{x}=\bm{b} [A,α]x=b有通解 k ( η 1 − η 2 ) + η 1 = k [ 0 , − 1 , − 1 , 3 ] T + [ 1 , − 2 , 1 , 3 ] T k(\bm{\eta}_1-\bm{\eta}_2)+\bm{\eta}_1=k[0,-1,-1,3]^\mathrm{T}+[1,-2,1,3]^\mathrm{T} k(η1η2)+η1=k[0,1,1,3]T+[1,2,1,3]T k ( η 1 − η 2 ) + η 2 = k [ 0 , − 1 , − 1 , 3 ] T + [ 1 , − 1 , 2 , 0 ] T k(\bm{\eta}_1-\bm{\eta}_2)+\bm{\eta}_2=k[0,-1,-1,3]^\mathrm{T}+[1,-1,2,0]^\mathrm{T} k(η1η2)+η2=k[0,1,1,3]T+[1,1,2,0]T,其中 k k k是任意常数。(这道题主要利用了构造通解求解

19.设 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an是互不相同的实数,且 A = [ 1 a 1 a 1 2 ⋯ a 1 n − 1 1 a 2 a 2 2 ⋯ a 2 n − 1 ⋮ ⋮ ⋮ ⋮ 1 a n a n 2 ⋯ a n n − 1 ] , x = [ x 1 x 2 ⋮ x n ] , b = [ 1 1 ⋮ 1 ] \bm{A}=\begin{bmatrix}1&a_1&a^2_1&\cdots&a_1^{n-1}\\1&a_2&a^2_2&\cdots&a_2^{n-1}\\\vdots&\vdots&\vdots&&\vdots\\1&a_n&a^2_n&\cdots&a_n^{n-1}\end{bmatrix},\bm{x}=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix},\bm{b}=\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix} A=111a1a2ana12a22an2a1n1a2n1ann1,x=x1x2xn,b=111,求线性方程组 A x = b \bm{Ax}=\bm{b} Ax=b的解。

  因 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an互不相同,故由范德蒙行列式知, ∣ A ∣ = ≠ 0 |\bm{A}|=\ne0 A==0,根据克拉默法则,方程组 A x = b \bm{Ax}=\bm{b} Ax=b有唯一解,且 x i = ∣ A i ∣ ∣ A ∣ i = 1 , 2 , ⋯   , n x_i=\cfrac{|\bm{A}_i|}{|\bm{A}|}i=1,2,\cdots,n xi=AAii=1,2,,n,其中, ∣ A i ∣ |\bm{A}_i| Ai b \bm{b} b代换 ∣ A ∣ |\bm{A}| A中的第 i i i列所得的行列式,有 ∣ A 1 ∣ = ∣ A ∣ , ∣ A i ∣ = 0 , i = 2 , 3 , ⋯   , n |\bm{A}_1|=|\bm{A}|,|\bm{A}_i|=0,i=2,3,\cdots,n A1=A,Ai=0,i=2,3,,n,故 A x = b \bm{Ax}=\bm{b}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值