2020张宇1000题【好题收集】【第十章:线性代数(二)】(还有问题)

文章目录向量组的线性相关与线性无关基础知识:齐次方程与线性无关:非齐次方程与线性无关848590【证明题】91(打星)【证明题】92(打星)向量组的线性相关与线性无关基础知识:齐次方程与线性无关:不存在不全为0的k1,k2...k_1,k_2...k1​,k2​...使得k1α1+k2α2+...+knαn=0,也就是齐次方程AX=0只有零解⇒∣A∣不等于0k_1\alpha_1+k_2...
摘要由CSDN通过智能技术生成

向量组的线性相关与线性无关

基础知识:

齐次方程与线性无关:

不存在不全为0的 k 1 , k 2 . . . k_1,k_2... k1,k2...使得
k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 , 也 就 是 齐 次 方 程 A X = 0 只 有 零 解 ⇒ ∣ A ∣ 不 等 于 0 k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=0,也就是齐次方程AX=0只有零解\Rightarrow |A|不等于0 k1α1+k2α2+...+knαn=0,AX=0A0

非齐次方程与线性无关

不存在不全为0的 k 1 , k 2 . . . k_1,k_2... k1,k2...使得
k 1 α 1 + k 2 α 2 + . . . + k n α n = β , 也 就 是 非 齐 次 方 程 A X = β 有 唯 一 解 ⇒ ∣ A ∣ 不 等 于 0 k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=\beta,也就是非齐次方程AX=\beta有唯一解\Rightarrow |A|不等于0 k1α1+k2α2+...+knαn=β,AX=βA0

矩阵等价

要长得一样的矩阵,比如都是 n × m n\times m n×m的,然后还要秩相等才等价
换句话说,两个矩阵能用初等变换过来就等价

向量组等价

两个向量组等价的充要条件好像是:能互相线性表示
然后 r ( I 1 ) = r ( I 2 ) = r ( I 1 , I 2 ) r(I_1)=r(I_2)=r(I_1,I_2) r(I1)=r(I2)=r(I1,I2)这个是推出来的结论

有种说法是化成最简形不看非零行长得一样就等价,但是是不对的,比如下面的例子,他们不能相互表示
[ 1 1 1 1 ] 和 [ 1 1 0 0 ] \begin{bmatrix} 1&1 \\ 1&1 \end{bmatrix}和\begin{bmatrix} 1&1 \\ 0& 0 \end{bmatrix} [1111][1010]

84

设 有 两 个 向 量 组 ( 1 ) α 1 , α 2 . . . α s , ( 2 ) β 1 , β 2 . . . β s , 存 在 两 组 不 全 为 0 的 数 k 1 , k 2 . . . k s , λ 1 , λ 2 . . . λ s , 使 得 ( k 1 + λ 1 ) α 1 + ( k 2 + λ 2 ) α 2 + . . . + ( k s + λ s ) α s + ( k 1 − λ 1 ) β 1 + ( k 2 − λ 2 ) β 2 + . . . + ( k s − λ s ) β s = 0 , 则 设有两个向量组(1)\alpha_1,\alpha_2...\alpha_s,(2)\beta_1,\beta_2...\beta_s,存在两组不全为0的数k_1,k_2...k_s,\lambda_1,\lambda_2...\lambda_s,使得(k_1+\lambda_1)\alpha_1+(k_2+\lambda_2)\alpha_2+...+(k_s+\lambda_s)\alpha_s+(k_1-\lambda_1)\beta_1+(k_2-\lambda_2)\beta_2+...+(k_s-\lambda_s)\beta_s=0,则 (1)α1,α2...αs,(2)β1,β2...βs,0k1,k2...ks,λ1,λ2...λs,使(k1+λ1)α1+(k2+λ2)α2+...+(ks+λs)αs+(k1λ1)β1+(k2λ2)β2+...+(ksλs)βs=0,
(A) α 1 + β 1 , . . . , α s + β s , α 1 − β 1 , . . . , α s − β s 线 性 相 关 \alpha_1+\beta_1,...,\alpha_s+\beta_s,\alpha_1-\beta_1,...,\alpha_s-\beta_s线性相关 α1+β1,...,αs+βs,α1β1,...,αsβs线

(B) α 1 + β 1 , . . . , α s + β s , α 1 − β 1 , . . . , α s − β s 线 性 无 关 \alpha_1+\beta_1,...,\alpha_s+\beta_s,\alpha_1-\beta_1,...,\alpha_s-\beta_s线性无关 α1+β1,...,αs+βs,α1β1,...,αsβs线

(C) α 1 , . . . , α s 以 及 β 1 , . . . , β s 线 性 相 关 \alpha_1,...,\alpha_s以及\beta_1,...,\beta_s线性相关 α1,...,αsβ1,...,βs线

(D) α 1 , . . . , α s 以 及 β 1 , . . . , β s 线 性 无 关 \alpha_1,...,\alpha_s以及\beta_1,...,\beta_s线性无关 α1,...,αsβ1,...,βs线

这道题容易看得眼花缭乱的
阔以化成 ( A + B ) K + ( A − B ) λ = 0 (A+B)K+(A-B)\lambda=0 (A+B)K+(AB)λ=0
其中 A , B 是 由 α , β 组 成 的 矩 阵 , K 和 λ 是 列 向 量 A,B是由\alpha,\beta组成的矩阵,K和\lambda是列向量 A,Bα,β,Kλ
所以 ( A + B ) 和 ( A − B ) (A+B)和(A-B) (A+B)(AB)是线性相关的

85

翻 译 成 人 话 题 目 的 意 思 就 是 : 线 性 无 关 的 列 向 量 组 成 的 A 矩 阵 中 , 经 过 一 下 变 换 线 性 相 关 的 是 翻译成人话题目的意思就是:线性无关的列向量组成的A矩阵中,经过一下变换线性相关的是 线A,线
(A)第一行加到第二行
(B)第一行变成相反数
(C)第一行改为0
(D)再加上一行
有争议的就是在C和D里面选
线性无关再加一个维度也无关,因此D不选,一个维度变成0就可能相关了,所以答案是C

90【证明题】

A 是 n × m 矩 阵 , B 是 m × n 矩 阵 , 若 A B = E , 证 明 : B 的 列 向 量 线 性 无 关 A是n\times m矩阵,B是m\times n矩阵,若AB=E,证明:B的列向量线性无关 An×m,Bm×n,AB=E,:B线
r ( B ) ≥ r ( A B ) = n r(B)\geq r(AB)=n r(B)r(AB)=n
但是 r ( B ) ≤ n r(B)\leq n r(B)n却不一定呀,没说 n 和 m n和m nm哪个大得哇
这种方法感觉不是很好,还是第二种比较好

设存在一个列向量 X X X使得 B X = O BX=O BX=O
然后左右同时左乘 A A A

A B X = O ⇒ E X = O ⇒ X = O ABX=O\Rightarrow EX=O\Rightarrow X=O ABX=OEX=OX=O
所以这个齐次方程只有零解,所以 B B B的列向量线性无关

91(打星)【证明题】

设 A 为 正 定 矩 阵 , α 1 , α 2 , . . . , α n 为 n 维 非 零 列 向 量 , 且 满 足 α i T A α j = 0 ( i 不 等 于 j ) , 证 明 : 向 量 组 α 1 , α 2 , . . . , α n 线 性 无 关 设A为正定矩阵,\alpha_1,\alpha_2,...,\alpha_n为n维非零列向量,且满足\alpha_i^TA\alpha_j=0(i不等于j),证明:向量组\alpha_1,\alpha_2,...,\alpha_n线性无关 A,α1,α2,...,αnn,αiTAαj=0(ij),:α1,α2,...,αn线

这道题 i 不 等 于 j i不等于j ij的时候=0,感觉就有点想三角函数一样是正交基一样

设 有 : k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 设有:k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=0 :k1α1+k2α2+...+knαn=0

左右两边同时乘上 α i T A \alpha_i^TA αiTA
就其他都是0了就只剩下 α i T A α j \alpha_i^TA\alpha_j αiTAαj
因此等式变为: α i T A k i α j = 0 ⇒ k i = 0 ⇒ 线 性 无 关 \alpha_i^TAk_i\alpha_j=0\Rightarrow k_i=0\Rightarrow 线性无关 αiTAkiαj=0ki=0线

92(打星)

A , B , C 是 3 阶 矩 阵 , 满 足 A B = − 2 B , C A T = 2 C , B = [ 1 2 3 − 1 1 0 2 − 1 1 ] , C = [ 1 − 2 1 − 2 4 − 2 − 1 2 − 1 ] A,B,C是3阶矩阵,满足AB=-2B,CA^T=2C,B=\begin{bmatrix} 1& 2 &3 \\ -1&1 &0 \\ 2&-1 &1 \end{bmatrix},C=\begin{bmatrix} 1& -2 &1 \\ -2& 4 &-2 \\ -1& 2 &-1 \end{bmatrix} A,B,C3,AB=2B,CAT=2C,B=112211301,C=121242121
( 1 ) 求 A (1)求A (1)A
本来以为是个简单题,结果 B , C B,C B,C都不可逆,一下子就不知道怎么办了
看答案才反应过来,竟然是用特征值来做的(ㄒoㄒ)
第一次遇到这种题
B = [ β 1 , β 2 , β 3 ] , C = [ α 1 , α 2 , α 3 ] B=[\beta_1,\beta_2,\beta_3],C=[\alpha_1,\alpha_2,\alpha_3] B=[β1,β2,β3],C=[α1,α2,α3]

∵ A B = − 2 B ⇒ λ = − 2 是 A 的 一 个 特 征 值 \because AB=-2B\Rightarrow \lambda=-2是A的一个特征值 AB=2Bλ=2A
还记得有个判断对角化的结论嘛? 特 征 值 是 几 重 根 , 就 要 解 出 来 几 个 线 性 无 关 的 特 征 向 量 , 不 然 就 不 能 对 角 化 特征值是几重根,就要解出来几个线性无关的特征向量,不然就不能对角化 ,线,

B 矩 阵 里 β 1 , β 2 B矩阵里\beta_1,\beta_2 Bβ1,β2线性无关且 β 3 = β 1 + β 2 , 因 此 λ = − 2 是 二 重 根 \beta_3=\beta_1+\beta_2,因此\lambda=-2是二重根 β3=β1+β2,λ=2
另外个式子还要转置一哈变成 A C T = 2 C T AC^T=2C^T ACT=2CT
同 理 C T 矩 阵 里 面 只 有 一 个 线 性 无 关 的 , 因 此 λ = 2 是 一 重 根 同理C^T矩阵里面只有一个线性无关的,因此\lambda=2是一重根 CT线,λ=2
因此特征矩阵P就是 P = [ β 1 , β 2 , α 1 ] P=[\beta_1,\beta_2,\alpha_1] P=[β1,β2,α1]
P − 1 A P = [ − 2 − 2 2 ] P^{-1}AP=\begin{bmatrix} -2& & \\ & -2 & \\ & &2 \end{bmatrix} P1AP=222这样就能把 A A A求出来了

( 2 ) 证 明 : 对 于 任 何 三 维 列 向 量 ξ , 一 定 有 A 100 ξ 与 ξ 线 性 相 关 (2)证明:对于任何三维列向量\xi,一定有A^{100}\xi与\xi线性相关 (2):ξ,A100ξξ线
这题也很牛皮呀~
∵ β 1 , β 2 , α 1 线 性 无 关 \because \beta_1,\beta_2,\alpha_1线性无关 β1,β2,α1线
∴ k 1 β 1 + k 2 β 2 + k 3 α 1 能 表 示 任 何 三 维 列 向 量 , 因 此 令 ξ = k 1 β 1 + k 2 β 2 + k 3 α 1 \therefore k_1\beta_1+k_2\beta_2+k_3\alpha_1能表示任何三维列向量,因此令\xi=k_1\beta_1+k_2\beta_2+k_3\alpha_1 k1β1+k2β2+k3α1,ξ=k1β1+k2β2+k3α1

A 100 ξ = k 1 A 100 β 1 + k 2 A 100 β 2 + k 3 A 100 α 1 再 利 用 { A β 1 = − 2 β 1 A β 2 = − 2 β 2 A α 1 = 2 α 1 计 算 = k 1 2 100 β 1 + k 2 2 100 β 2 + k 3 2 100 α 1 = 2 100 ξ A^{100}\xi=k_1A^{100}\beta_1+k_2A^{100}\beta_2+k_3A^{100}\alpha_1再利用\left\{\begin{matrix} A\beta_1=-2\beta_1\\ \\ A\beta_2=-2\beta_2\\ \\ A\alpha_1=2\alpha_1 \end{matrix}\right.计算=k_12^{100}\beta_1+k_22^{100}\beta_2+k_32^{100}\alpha_1=2^{100}\xi A100ξ=k1A100β1+k2A100β2+k3A100α1Aβ1=2β1Aβ2=2β2Aα1=2α1=k12100β1+k22100β2+k32100α1=2100ξ
所以这两个成比例,一定线性相关

93

向 量 组 ( 1 ) α 1 , α 2 , . . . , α s , 向 量 组 ( 2 ) β 1 , β 2 , . . . , β t , 且 α i 不 能 由 向 量 组 ( 2 ) 表 示 出 来 , 则 向 量 组 α 1 , α 2 , . . . , α s , β 1 , β 2 , . . . , β t 的 相 关 性 ? 向量组(1)\alpha_1,\alpha_2,...,\alpha_s,向量组(2)\beta_1,\beta_2,...,\beta_t,且\alpha_i不能由向量组(2)表示出来,则向量组\alpha_1,\alpha_2,...,\alpha_s,\beta_1,\beta_2,...,\beta_t的相关性? (1)α1,α2,...,αs,(2)β1,β2,...,βt,αi(2),α1,α2,...,αs,β1,β2,...,βt?
答案是:他们两个可能线性相关也可能线性无关
答案是举的实在的例子,我们也阔以从秩入手
有 个 结 论 就 是 r ( A + B ) ≤ r ( A ) + r ( B ) 有个结论就是r(A+B)\leq r(A)+r(B) r(A+B)r(A)+r(B)
先假设一哈这两个列向量的维度都很大,也就是说秩不取决于列向量的维度
从上面就阔以看出两个矩阵合并在一起,可以是小于原来的秩,那么合并起来就线性相关了,等于原来的秩的时候就线性无关了

96(打星)【坑大林】

已 知 α 1 , α 2 , α 3 , α 4 为 三 维 非 零 列 向 量 下 列 说 法 正 确 的 有 几 个 : { ① : 如 果 α 4 不 能 由 α 1 , α 2 , α 3 线 性 表 出 , 则 α 1 , α 2 , α 3 线 性 相 关 ② : 如 果 α 1 , α 2 , α 3 线 性 相 关 , α 2 , α 3 , α 4 线 性 相 关 , 则 α 1 , α 2 , α 4 也 线 性 相 关 ③ 如 果 r ( α 1 , α 1 + α 2 , α 2 + α 3 ) = r ( α 4 , α 1 + α 4 , α 2 + α 4 , α 3 + α 4 ) 则 α 4 可 以 由 α 1 , α 2 , α 3 线 性 表 出 已知\alpha_1,\alpha_2,\alpha_3,\alpha_4为三维非零列向量下列说法正确的有几个:\left\{\begin{matrix} ①:如果\alpha_4不能由\alpha_1,\alpha_2,\alpha_3线性表出,则\alpha_1,\alpha_2,\alpha_3线性相关\\ \\ ②:如果\alpha_1,\alpha_2,\alpha_3线性相关,\alpha_2,\alpha_3,\alpha_4线性相关,则\alpha_1,\alpha_2,\alpha_4也线性相关\\ \\ ③如果r(\alpha_1,\alpha_1+\alpha_2,\alpha_2+\alpha_3)=r(\alpha_4,\alpha_1+\alpha_4,\alpha_2+\alpha_4,\alpha_3+\alpha_4)则\alpha_4可以由\alpha_1,\alpha_2,\alpha_3线性表出 \end{matrix}\right. α1,α2,α3,α4::α4α1,α2,α3线,α1,α2,α3线:α

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值