4、(1)选择适当模型拟合序列发展
原序列时序图、自相关图、偏自相关图、adf单位根检验结果如下所示。由时序图和adf检验结果可以看出原序列平稳。自相关图拖尾,偏自相关图一阶截尾。可以拟合AR(1)模型。
AR(1)模型拟合结果如下图所示。拟合系数p值均小于0.05,显著不为0。
拟合模型为:xt=6.78036+0.46561xt-1+et
对拟合模型进行残差自相关检验,检验结果如下图所示。检验p值均大于0.05,可以认为残差序列为白噪声序列。
4、(2)检验序列异方差,存在异方差则请拟合条件异方差
对残差序列进行异方差检验,检验结果如下左图所示。 arch异方差检验结果的p值小于0.05,检验显著,存在异方差。进而可以拟合ARCH模型。可以考虑拟合ARCH(1),拟合结果如下右图所示。拟合模型为E(et^2 | et-1, et-2,...)=11.904+0.397et-1^2。其中拟合系数都显著。
【程序】
data a;
input year birth_rate@@;
year=intnx("year",'01jan1750'd,_n_-1);
format year year4.;
cards;
9 12 8 12 10 10 8 2 0 7 10 9 4 1 7 5 8 9 5 5 6 4 -9 -27 12
10 10 8 8 9 14 7 4 1 1 2 6 7 7 -2 -1 7 12 10 10 4 9 10 9 5
4 3 7 7 6 8 3 4 -5 -14 1 6 3 2 6 1 13 10 10 6 9 10 13 16 14
16 12 8 7 6 9 4 7 12 8 14 11 5 5 5 10 11 11 9 12 13 8 6 10 13
;
proc gplot data=a;
plot birth_rate*year;
symbol1 c=black v=star i=join;
run;
proc arima data=a;
identify var=birth_rate stationarity=(adf);
estimate p=1;
run;
proc autoreg data=a;
model birth_rate=t/ nlag=5 dwprob archtest;
run;
data a;
input birth_rate@@;
t=_n_;
cards;
9 12 8 12 10 10 8 2 0 7 10 9 4 1 7 5 8 9 5 5 6 4 -9 -27 12
10 10 8 8 9 14 7 4 1 1 2 6 7 7 -2 -1 7 12 10 10 4 9 10 9 5
4 3 7 7 6 8 3 4 -5 -14 1 6 3 2 6 1 13 10 10 6 9 10 13 16 14
16 12 8 7 6 9 4 7 12 8 14 11 5 5 5 10 11 11 9 12 13 8 6 10 13
;
proc autoreg data=a;
model birth_rate=t/ nlag=5 dwprob archtest;
model birth_rate=t/ nlag=1 garch=(p=5);
run;