derain survey

图像分解:

使用双边滤波将图像分解为低频和高频部分,分别包含图像的结构和纹理,然后对高频部分根据HOG特征(方向直方图)进行聚为2类(雨纹和背景纹理),对两个部分进行稀疏编码来实现基于MCA方法的图像分解效果。最后将高频部分的结合分量与低频部分进行积分得到去雨后的图像。

 

联合去雨网络:

解决:

1. ACM模型区域导致的背景模糊

2.不同方向的雨纹叠加

.3,雨累积形成的雨雾降低了背景和雨纹变的可见度

创新:

1.HRM模型

2.迭代去雨

 

Removing rain from single images via a deep detail network

解决:

1. 当纹理特征和雨纹特征很相似时,很难在去除雨纹的同时,保留细节信息

创新:

1.使用负残差结构表示雨图和干净图之间的差异,减少预测范围,使得模型更容易进行深度学习。

2. 使细节层作为输入,消除背景干扰。提高雨纹质量。

3.适当的网络设计,使得深层网络处理低层次图像任务

 

Joint Convolutional Analysis and Synthesis Sparse Representation for Single Image Layer Separation

解决:

1.ASR系数在相对平滑的区域是非常稀疏的,但是它会在纹理区域产生许多非零。在纹理区域具有稀疏非零的情况下,SSR需要更多的非零系数来逼近平滑区域。因此使用不同的稀疏表示来逼近图像的两个分量(平滑区,纹理区)

《稀疏表示主要用于图像去噪、超分辨率、压缩》

2.使用判别稀疏编码方法[25]和高斯混合模型[24]。然而,这些方法采用同一类型的模型来表征背景部分和雨纹部分,需要外部数据对这两层进行不同的字典或GMM模型训练。

3.Retinex decomposition model,一类方法采用保持边缘平滑的方法,如双边滤波[9]和引导滤波[18],直接从观测图像生成分段平滑基层。另一类方法[10,14]在基础层上施加先验,通过求解优化问题得到分离结果

 

AttrGAN

解决:

1. 以前的雨滴去除方法使用立体相机、视频、光学快门,不适于单幅图像。

2. 深度学习去除雨滴的方法会产生模糊的输出,而且只能处理小的雨滴,不能处理大的、密集的雨滴

 

Gated Context Aggregation Network for Image Dehazing and Deraining

1. 使用平滑空洞卷积,解决空洞卷积的网格效应

2. 使用门控融合,对不同层的特征进行加权求和(采用3X3 的卷积实现)

 

Uncertainty Guided Multi-Scale Residual Learning-using a Cycle Spinning CNN for Single Image De-Raining

1. 使用循坏自旋网络去除伪影(用于去除正交小波变换去噪时映入的伪影,对深度学习的方法通用)。就是对输入图片在行、列方向上做一个像素循环移位,图像自增强。

2. 使用残差图和置信图,作为雨纹位置信息的指导,解决过度去雨和去雨不足的问题。(分别使用残差网络和置信网络得到)

残差网络:Convblock(64,32)-Convblock(32,32)-Convblock(32,3)、

置信网络:Convblock(67,16)-Convblock(16,16)-Convblock(16,3)

 

Progressive Image Deraining Networks: A Better and Simpler Baseline

1. 引入LSTM的各个阶段作为输入,传递跨阶段的特征依赖,便于去除雨纹。(相比GRU更好)

2. 使用阶段间递归运算而不是共享权重,在少量降低性能的情况下,大大降低网络参数

 

https://github.com/csdwren/PReNet.

 

Semi-supervised Transfer Learning for Image Rain Removal

1. 使用KL散度让模拟雨的分布接近真实雨的高斯分布

loss

Gx GMM  - 训练阶段学习到的雨条纹分布

1.无监督损失(最小二乘)

2. 全差分正则化(对相邻像素差值求和),对图像进行微平滑,去除潜在的雨纹。

3. ???

猜想:

1.使用KL散度让合成雨纹逼近真实雨纹,然后用优化过后的雨纹生成雨纹图像,送入神经网络学习,提取雨纹,这样网络就更善于提取真实的雨纹。

2. 非监督模块是否会更新网络参数??

 

Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning∗

1. 分层提取物理模型参数

2.更具透射率T估计场景深度,用特征乘以深度图,让辨别器更关注远处的场景,防止去雾时引起的物体发暗。

3.由于J(clean)的生成对A非常敏感,因此将A作为输入。

 

Syn2Real Transfer Learning for Image Deraining using Gaussian Processes

引入将无标签图像用于训练,提高泛化性能。

对每个无标签图像编码后的特征向量,在有标签数据中,找k近邻,用其均值作为伪标签,然后计算特征向量与伪标签的损失,根据损失更新编码器的权重,让编码器适用于无标签的数据。

 

 

Multi-Scale Progressive Fusion Network for Single Image Deraining

1.创新点

考虑多尺度特征的相关性。

不同于级联金字塔,只使用高层特征帮助相邻金字塔表示,导致一些有用的层次和尺度特征丢失。

 

 

Detail-recovery Image Deraining via Context Aggregation Networks

1. 将去雨与图像恢复分离

2.

 

squeeze-and-excitation

根据通道包含上下文信息,赋予不同的权重

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值