分治法求最近点对

1)算法描述:

1.分割将集合S进行以垂直于x轴的直线L进行平均划分,并且保证SL和SR中的点数目各为n/2,

(否则以其他方式划分S,有可能导致SL和SR中点数目一个为1,一个为n-1,不利于算法效率,要尽量保持树的平衡性)

依次找出这两部分中的最小点对距离:δL和δR,记SL和SR中最小点对距离δ = min(δL,δR),如图1:

   

    2.查找边界附近距离小于δ的点对 以L为中心,δ为半径划分一个长带,最小点对还有可能存在于SL和SR的交界处,如下图2左图中的虚线带,p点和q点分别位于SL和SR的虚线范围内,在这个范围内,p点和q点之间的距离才会小于δ,最小点对计算才有意义。

    

       又因为虚线内的点可能比较多,因此不可能全部进行距离比较,因此对数据的y轴也进行划分,两条垂直于y轴的直线距离p为+-δ,这样就得到了一个矩形,只需将p与矩形内的点进行比较即可(矩形外的点与p的距离一定大于δ,没有比较的意义),且可以证明,矩形内的点最多为6个,因此点p最多与SR中的点比较6次即可。(因为最小距离为δ,要使矩形内的点的数量最多,则只有分布于两个正方形的六个顶点上,其他情况的点数全都一定小于6)

    2) 代码描述:

     1)对点集S的点x坐标和y坐标进行升序排序,获得点集Sx和Sy

     2)令δ=∞;   //δ为最小点位距离

     3)Divide_conquer(Sx,Syδ)  //分治法

             if (Sx.count=1) then δ=∞;    //如果Sx中只有一个点,则δ=

                  return δ;

             else if(Sx.count=2 and d(Sx.[0],Sx.[1])<δ) //如果Sx中只有2个点,则δ为两点之间距离

                   δ=d(Sx.[0],)Sx.[1]); 

                   return δ;

             else    //如果Sx中多于2个点,则Sx,Sy分治,以中心点画线,将Sx分为左右两部分SxLSxRSy分为SyLSyR

                   j1=1,j2=1,k1=1,k2=1;

                   mid = Sx.count/2;   //midSx中的中间点点号

                   L = Sx.[mid].x;      //LSx中的中间点x坐标

                   for(i=1,i<Sx.count,i++)

                   {

                         if(i<=mid)     //将Sx中间线以左地方的点存入到SxL,新数组保持原来的升序性质

                                SxL[k1] = Sx[i]   k1++;

                         else   //将Sx中间线以右的地方的点存入到SxR数组保持原来的升序性质

                                SxR.count[k2] = Sx[i]   k2++;

                         if(Sy[i].<L)   //将Sy中间线以左地方的点存入到SyL数组保持原来的升序性质

                                SyL[j1] = Sx[i]   j1++;

                         else   //将Sy中间线以右地方的点存入到SyR数组保持原来的升序性质

                                SyR[j2] = Sx[i]   j2++;

                   }

              δL = Divide_conquer(SxL,SyLδ);    //获取Sx中的的最小点位距离δL

 

              δR = Divide_conquer(SxR,SyRδ);   //获取Sy中的的最小点位距离δR

              δ= min (δL,δR);

              δ=merge(SyL,SyRδ);    //获SxSy交界处的最小点位距离,并综合 δLδR 求出点集的最小点位距离δ

      return δ;

 

      函数merge(SyL,SyRδ)

      merge(SyL,SyRδ)

      {

          i1=1,i2=1;

          for(i=1,i<SyL.count,i++)   //获取SyL中在左边虚框(距离小于δ)内的点,存入到S'yL数组保持原来的升序性质

          {

              if(SyL[i].x>L-δ)

                  then S'yL[i1]= SyL[i], i1++,

           }

          for(i=1,i<SyR.count,i++)  //获取SyR中在右边虚框(距离小于δ)内的点,存入到S'yR数组保持原来的升序性质

          {

              if(SyR[i].x<L+δ)

              then S'yR[i2]= SyR[i], i2++,

          }

 

          t=1;

          for(i=1,i<S'yL.count,i++)

           {     

                while(S'yR[t].y< S'yL[t].y and t < SyR.count)  //获取点集S'yR内距离点S'yL[t]y坐标最接近的点号

                { t++; }

                for( j= max(1,t-3), j<=min(t+3,S'yR.count),j++)   //计算S'yR中的点与S'yL[t]y坐标相邻的六个点的距离

                {

                      if(d(S'yL[i],S'yL[j])<δ)    //如果前两点之间距离小于δ

                      then δ = d(S'yL[i],S'yL[j]);   //则最小点位距离δ为当前两点之间距离

                }

          return δ

      }

 

 3)算法时间复杂度:

      首先对点集S的点x坐标和y坐标进行升序排序,需要循环2nlogn次,复杂度为O(2nlogn)

      接下来在分治过程中,对于每个S'yL中的点,都需要与S'yR中的6个点进行比较

            O(n)= 2O(n/2) + (n/2)*6  (一个点集划分为左右两个点集,时间复杂度为左右两个点集加上中间区域运算之和)

      其解为O(n)< O(3nlogn)

     因此总的时间复杂度为O(3nlogn),比蛮力法的O(n2)要高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

THMAIL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值