迁移学习与领域自适应基础
迁移学习(Transfer Learning)是机器学习中的一个重要分支,其核心思想是将在一个领域(源领域)学到的知识迁移到另一个领域(目标领域),从而提升目标领域的模型性能。领域自适应(Domain Adaptation)是迁移学习的一种具体实现方式,主要解决源领域和目标领域数据分布不一致的问题。
领域自适应的核心挑战在于如何减少源领域和目标领域之间的分布差异。常见的解决方法包括特征对齐、对抗训练和自训练等。以下将从理论基础、方法分类和代码实现三个方面展开讲解。
理论基础
领域自适应的数学基础可以表述为:给定源领域数据 $D_s = {(x_i^s, y_i^s)}{i=1}^{n_s}$ 和目标领域数据 $D_t = {x_j^t}{j=1}^{n_t}$,目标是通过学习一个映射函数 $f$,使得在目标领域上的预测误差最小化:
$$ \min_f \mathbb{E}_{(x,y) \sim D_t} [\mathcal{L}(f(x), y)] $$
但由于目标领域缺乏标签,直接优化上式不可行。因此,领域自适应通常通过最小化源领域和目标领域之间的分布差异来实现:
$$ \min_f \mathbb{E}_{(x,y) \sim D_s} [\mathcal{L}(f(x), y)] + \lambda \cdot \text{dist}(D_s, D_t) $$
其中 $\text{dist}(D_s, D_t)$ 是衡量两个领域分布差异的度量,$\lambda$ 是权衡系数。
方法分类
领域自适应方法可以分为以下几类:
- 基于特征对齐的方法:通过将