【路径规划】基于matlab汽车零部件循环取货路径优化(三维装载约束)【含Matlab源码 1100期】

该博客介绍了如何使用遗传算法解决三维装载约束下的汽车零部件循环取货路径优化问题。作者首先阐述了问题背景和模型假设,接着展示了部分MATLAB源代码,包括初始化、适应度计算、选择、交叉和变异等遗传算法步骤。博客还提到了运行结果,并提供了相关领域的咨询服务和技术应用范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)
付费专栏Matlab路径规划(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、简介

1 问题描述:
在考虑汽车零部件包装箱长、宽、高等三维尺寸的约束下,以配送中心为原点,分派多辆同一规格的货车到n个供应商处取货,最后回到配送中心。本章所构建的三维装载约束下的汽车零部件循环取货路径优化模型要解决的问题是确定循环取货路径,要求充分考虑汽车零部件在货车车厢中的三维装载位置,确保每个供应商处的零部件均能成功装载,尽可能使车辆装载率最大,且所有车辆的总行驶路径最短。
基于上述分析,本文所研究的循环取货优化问题可做如下假设:
假设条件:
(1)一个配送中心与多个供应商,且车辆从配送中心出发,最后均回到配送中心;
(2)每辆货车车厢规格(即车厢长、宽、高,载重质量等)均相同;
(3)每辆货车匀速行驶,且行驶速度已知;不存在交通堵塞情况;
(4)配送中心与各零部件供应商以及各供应商之间的距离已知;
(5)各供应商处提供的零部件均由长方体箱包装,且各长方体箱的尺寸、数量、重量等参数已知;
(6)每个供应商提供的零部件总体积、总重量均小于每辆车的容积与载重质量;每个供应商只由一辆车完成服务,且只服务一次;
(7)每条线路上的货物总重量、总体积不得超过货车载重质量及容积;
(8)考虑汽车零部件供应的准时性,每辆货车必须在规定时间以内返回配送中心;
(9)零部件(指长方体包装箱,下同)必须在车厢内部,不得超出车厢车门;
(10)零部件的边总是与车厢的边平行或者垂直、高度方向与车厢高度方向平行,且不得倒置;
(11)货物的重心即为几何中心。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄二、部分源代码

close all;
clear;
clc;

format long;

%load data of mat file trans from excel
load_data;

%set data of known infomation
set_data;

%get the distance among the nodes
get_distance;

%preparation for true task
preparation;

%GA
%GA_for_route;

%GA for tabu
GA_tabu_for_route;

%plot
plot_final;
%start the GA

%struct of GA
GA=struct(‘num_of_individual’,[],‘num_of_generation’,[],…
‘probability_of_mate’,[],…
‘pairs_of_mate’,[],…
‘probability_of_mutation’,[],…
‘probability_of_reverse’,[],…
‘individual’,…
struct(…
‘route_code’,[],‘distance’,[],‘time_cost’,[],…
‘volume_rate’,[],‘weight_rate’,[],‘adaptability’,[],…
‘satisfy’,[],‘van_instance’,…
struct(‘supplier_num_list’,[],‘distance’,[],‘time_cost’,[],…
‘satisfy’,[],‘topology’,[],…
‘length_width’,[],‘height’,[])…
),…
‘sum_of_adaptability’,[],‘accumulate_of_adaptability’,[]);

%set the numbers individual in the group
GA.num_of_individual=8000;
%set the generations
GA.num_of_generation=200;
%set the probability of mate
GA.probability_of_mate=0.4;
%set the pairs to mate
GA.pairs_of_mate=…
floor(GA.probability_of_mate*GA.num_of_individual/2);
%set the probability of mutation
GA.probability_of_mutation=0.15;
%set the probability of reverse
GA.probability_of_reverse=0.1;

%set the property of individual in the group
GA.individual(1:GA.num_of_individual)=…
struct(‘route_code’,[],‘distance’,[],‘time_cost’,[],…
‘volume_rate’,[],‘weight_rate’,[],‘adaptability’,[],…
‘satisfy’,[],‘van_instance’,…
struct(‘supplier_num_list’,[],‘distance’,[],‘time_cost’,[],…
‘satisfy’,[],‘topology’,[],…
‘length_width’,[],‘height’,[]));

%result show
group_trend(1:GA.num_of_generation)=…
struct(‘route_code’,[],‘distance’,[],‘time_cost’,[],…
‘volume_rate’,[],‘weight_rate’,[],‘adaptability’,[],…
‘satisfy’,[],‘van_instance’,…
struct(‘supplier_num_list’,[],‘distance’,[],‘time_cost’,[],…
‘satisfy’,[],‘topology’,[],…
‘length_width’,[],‘height’,[]));

%%
%for the number of van,start from min_van_num
van_parameter.van_num=van_parameter.min_van_num;
%start
van_parameter.van_num=num_of_node;
%the problem is not solved in the beginning
problem_solved=0;

%a list save new generation
temp.index_in_accumulate_list=zeros(GA.num_of_individual,1);

while 1

%initialize all the individual in the group
%for each individual
for index_of_individual=1:GA.num_of_individual
    %route code and whom to service
    GA.individual(index_of_individual).route_code=...
        van_parameter.van_num*rand(num_of_node,1);
    %initialize the van information
    GA.individual(index_of_individual)...
        .van_instance(1:van_parameter.van_num)=struct(...
        'supplier_num_list',[],'distance',[],'time_cost',[],...
        'satisfy',[],'topology',[],...
        'length_width',[],'height',[]);
end


for index_of_generation=1:GA.num_of_generation
    
    %%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%step 1
    %compute the adaptability for each individual
    %and the summation of all the individual
    
    %the summation of all the individual in the group is 0
    GA.sum_of_adaptability=0;
    %set the accumulation of the adaptability
    GA.accumulate_of_adaptability=...
        zeros(GA.num_of_individual,1);
    
    %for each individual compute the adaptability
    for index_of_individual=1:GA.num_of_individual
        
        %reset distance for each individual
        GA.individual(index_of_individual).distance=0;
        
        %van instance
        %depend on the number of the van   
        %for each van
        for index_of_van=1:van_parameter.van_num
            %get the supplier number list
            temp.belong_list=...
                find(ceil(GA.individual(index_of_individual)...
                .route_code)==index_of_van);
            [~,temp.sorted_belong_list]=...
                sort(GA.individual(index_of_individual)...
                .route_code(temp.belong_list));
            GA.individual(index_of_individual)...
                .van_instance(index_of_van).supplier_num_list=...
                temp.belong_list(temp.sorted_belong_list);
            
            %get the distance and the time cost
            [~,GA.individual(index_of_individual)...
                .van_instance(index_of_van).distance,...
                GA.individual(index_of_individual)...
                .van_instance(index_of_van).time_cost]=...
                get_distance_and_time_cost(...
                GA.individual(index_of_individual)...
                .van_instance(index_of_van).supplier_num_list,...
                distance_data_struct,van_parameter,time);
            
            %get distance of each individual
            %add to time cost
            GA.individual(index_of_individual).distance=...
                GA.individual(index_of_individual).distance+...
                GA.individual(index_of_individual)...
                .van_instance(index_of_van).distance;
        end
        %for index_of_van=1:van_parameter.van_num
        
        %get time cost of each individual
        GA.individual(index_of_individual).time_cost=...
            GA.individual(index_of_individual).distance/...
            van_parameter.speed+num_of_node*time.load_and_unload;
        %get adaptability of each individual
        GA.individual(index_of_individual).adaptability=...
            (GA.individual(index_of_individual).time_cost)^(-9);
        
        %adaptability post process
        GA.individual(index_of_individual)=...
            post_process(GA.individual(index_of_individual),...
            supplier_struct,time,van_parameter,total);
        
        %give the accumulated adaptability
        if index_of_individual==1
            GA.accumulate_of_adaptability(index_of_individual)=...
                GA.individual(index_of_individual).adaptability;
        else
            GA.accumulate_of_adaptability(index_of_individual)=...
                GA.accumulate_of_adaptability(index_of_individual-1)+...
                GA.individual(index_of_individual).adaptability;
        end
    end
    %for index_of_individual=1:GA.num_of_individual
    
    %get the summation of adaptability
    GA.sum_of_adaptability=...
        GA.accumulate_of_adaptability(index_of_individual);
    
    %save index
    [~,max_index]=max(cat(1,GA.individual.adaptability));
    %save result
    group_trend(index_of_generation)=GA.individual(max_index);
    
    %%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%step 2 
    %individual copy by itself
    %eliminate the weaked
    
    %for each individual judge whether copy
    for index_of_individual=1:GA.num_of_individual
        %generate a random number
        temp.rand=rand*GA.sum_of_adaptability;
        %get the index in the accumulate of adaptability list
        temp.index_in_accumulate_list(index_of_individual)=...
            find((temp.rand<GA.accumulate_of_adaptability),1);
    end
    
    %copy
    GA.individual=GA.individual(temp.index_in_accumulate_list);
    
    
    %%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%step 3
    %mate
    for index_of_pair=1:GA.pairs_of_mate
        %choose two mate individual
        temp.mate_num1=ceil(rand*GA.num_of_individual);
        temp.mate_num2=ceil(rand*GA.num_of_individual);
        %choose the mate exchange joint
        temp.mate_joint=ceil(rand*(num_of_node-1));
        %make two new individual's route code
        temp.new_route_code1=...
            [GA.individual(temp.mate_num1)...
            .route_code(1:temp.mate_joint);...
            GA.individual(temp.mate_num2)...
            .route_code(temp.mate_joint+1:end)];
        temp.new_route_code2=...
            [GA.individual(temp.mate_num2)...
            .route_code(1:temp.mate_joint);...
            GA.individual(temp.mate_num1)...
            .route_code(temp.mate_joint+1:end)];
        %cover the old
        GA.individual(temp.mate_num1).route_code=temp.new_route_code1;
        GA.individual(temp.mate_num2).route_code=temp.new_route_code2;
    end
    
    
    %%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%step 4
    %mutation
    for index_of_individual=1:GA.num_of_individual
        
        %generate a random number
        temp.rand=rand;
        %judge whether can mutate
        if temp.rand<GA.probability_of_mutation
            %mutation_joint
            temp.mutation_joint=ceil(rand*num_of_node);
            %mutate
            GA.individual(index_of_individual)...
                .route_code(temp.mutation_joint)=...
                GA.individual(index_of_individual)...
                .route_code(temp.mutation_joint)+...
                rand*van_parameter.van_num;
            
            %avoid repeat
            if GA.individual(index_of_individual)...
                    .route_code(temp.mutation_joint)>...
                    van_parameter.van_num
                GA.individual(index_of_individual)...
                    .route_code(temp.mutation_joint)=...
                    GA.individual(index_of_individual)...
                    .route_code(temp.mutation_joint)-...
                    van_parameter.van_num;
            end
        end
        %if temp.rand<GA.probability_of_mutation
        
    end
    %for index_of_individual=1:GA.num_of_individual
    
    

problem_solved=1;
%%
%if the problem is solved
%then break out of the circulation
if problem_solved
    break;
end

end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]俞武扬.多式联运运输问题的混合遗传算法[J].计算机工程与应用. 2009,45(33)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值