【光学】基于matlab模拟调Q光纤激光器输出(光子数密度)【含Matlab源码 9021期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab物理应用仿真内容点击👇
Matlab物理应用 (进阶版)
付费专栏Matlab物理应用(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、模拟调Q光纤激光器输出(光子数密度)

模拟调制Q(Differential Gain)光纤激光器的输出过程涉及到激光腔中的光学和电学反馈机制。以下是基本的原理和步骤:

1 原理:
(1)激光工作物质:通常由掺杂光纤提供,当泵浦光源激发时,电子从基态跃迁到能级,然后通过受激辐射过程返回基态并释放光子。
(2)调Q效应:调Q光纤激光器的关键在于它的环形腔设计,内部存在两个相互平衡的反射镜,通过调节这两个反射镜的反射系数差异,控制光的往返次数,从而影响激光器的输出特性。
(3)调制作用:高增益区域(Gain Medium)的调制会影响激光器的输出功率,如果调制器改变,光子数密度会相应变化。

2 流程:
(1)泵浦源:外部泵浦光源向光纤注入能量,驱动原子从低能级向高能级跃迁。
(2)腔内光循环:高能级的原子释放的光子在腔内反复反射,形成正反馈环路,形成激光振荡。
(3)调制器干预:调制器通过电流信号改变反射镜的调制深度,控制光的进出,改变腔内的光强度,进而影响光子数密度。
(4)光子数密度计算:通过模拟软件,利用腔的物理参数(如反射率、增益系数、损耗等)和输入的电流信号,通过数值积分或偏微分方程解算得到光子数密度随时间的变化。
(5)稳态分析:长时间运行模拟,观察激光器在稳定状态下的光子数密度,评估其调制性能,如脉冲宽度、峰值功率等指标。

⛄二、部分源代码和运行步骤

1 部分代码

2 通用运行步骤
(1)直接运行main.m即可一键出图

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1] 门云阁.MATLAB物理计算与可视化[M].清华大学出版社,2013.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

本书是作者从事大型现代通信系统仿真工作20余年的经验总结,利用C++语言系统地讲解了复杂无线通信系统中各类模块的仿真原理与方法,并给出了大量实用的模型源代码。作者在本书编写过程中开发了工具包PracSim,这是一个由仿真模型和可互连的仿真结构组成的模块集,可以为用户提供一个可修改及开发的基础模型,以便能更接近用户所需仿真的系统。书中仿真结构和模型的源代码均可在Prentice Hall的网站上获得。通过本书的学习可使读者掌握无线通信系统仿真的基本方法,从而加深对无线通信和面向对象编程的理解,为从事通信领域的相关研究工作打下坚实的基础。. 本书内容丰富、实用性强,非常适合国内目前的需求。可作为高等院校信息类专业高年级本科生和研究生的通信系统仿真课程的教材,也可供相关工程技术人员参考使用。... 第1章 仿真:背景及回顾 1.1 通信系统 1.2 仿真过程 1.3 仿真程序 第2章 仿真基础结构 2.1 参输入 2.1.1 各参值 2.1.2 参组 2.1.3 枚举类型参 2.1.4 系统参 2.1.5 信号绘图参 2.2 信号 2.2.1 信号管理策略 2.2.2 信号管理系统的实现 2.3 控制信号 2.4 结果报告 附录2A 源代码实例 第3章 信号发生器 3.1 基本信号发生器 3.1.1 单位阶跃函 3.1.2 矩形脉冲 3.1.3 单位冲激 3.1.4 软件实现 3.2 音频信号发生器 3.2.1 软件实现 3.3 基带信号采样 3.3.1 采样的频域特性 3.4 基带据波形发生器 3.4.1 非归零NRZ基带信号 3.4.2 双相位基带信号 3.4.3 延迟制 3.4.4 应用中的问题 3.5 为带通信号建模 附录3A 源代码实例 第4章 随机过程模型 4.1 随机序列 4.1.1 离散分布 4.1.2 离散随机过程 4.2 随机过程发生器 4.2.1 线性同余序列 4.2.2 软件实现 4.2.3 随机发生器的评价 4.3 连续时间噪声过程 4.3.1 连续随机变量 4.3.2 随机过程 4.4 加性高斯噪声发生器 4.4.1 高斯分布 4.4.2 误差函 4.4.3 谱特性 4.4.4 噪声功率 4.4.5 高斯随机发生器 4.5 通带噪声 4.5.1 包络和相角 4.5.2 瑞利随机发生器 4.6 随机过程的参模型 4.6.1 自回归噪声模型 附录4A 源代码实例 第5章 离散变换 5.1 离散傅里叶变换 5.1.1 参选择 5.1.2 离散傅里叶变换的性质 5.2 时域抽取算法 5.2.1 软件注释 5.3 频域抽取算法 5.4 小采样N的离散傅里叶变换 5.5 素因算法 5.5.1 软件注释 附录 5A 源代码实例 第6章 谱估计 6.1 采样频谱 6.1.1 软件实现 6.2 Daniell 周图 6.2.1 软件实现 6.3 Bartlett 周图 6.3.1 软件实现 6.4 加窗和其他问题 6.4.1 三角窗 6.4.2 软件考虑 6.4.3 von Hann 窗 6.4.4 汉明窗 6.4.5 软件实现 6.5 Welch周图 6.5.1 软件实现 6.6 Yule-Walker方法 6.6.1 软件实现 附录6A 源代码实例 第7章 系统表征工具 7.1 线性系统 7.1.1 线性系统的特性 7.1.2 传递函 7.1.3 传递函的计算机表示方法 7.1.4 幅频响应、相频响应和时延响应 7.2 星座图 7.2.1 眼图 附录7A 源代码实例 第8章 滤波器模型 8.1 建模方法 8.1.1 值积分 8.1.2 频率响应采样 8.1.3 字滤波器 8.2 模拟滤波器响应 8.2.1 低通滤波器幅频响应特性 8.2.2 滤波器转换 8.3 经典模拟滤波器 8.3.1 巴特沃斯滤波器 8.3.2 切比雪夫滤波器 8.3.3 椭圆滤波器 8.3.4 贝塞尔滤波器 8.4 由值积分来仿真滤波器 8.4.1 双二次型 8.4.2 软件设计 8.5 用IIR字滤波器仿真模拟滤波器 8.5.1 IIR滤波器的性质 8.5.2 模拟滤波器映射为IIR字滤波器 8.5.3 软件设计 8.6 频域内滤波 8.6.1 快速卷积 8.6.2 软件设计 附录 8A 源代码实例 第9章 制与解 9.1 仿真的要点 9.1.1 利用恢复的载波 9.2 正交相移键控 9.2.1 非理想特性 9.2.2 正交制器模型 9.2.3 QPSK相关解器模型 9.2.4 正交解器模型 9.2.5 QPSK仿真 9.2.6 QPSK信号的性质 9.2.7 偏移 QPSK 9.3 二进制相移键控 9.3.1 BPSK制器模型 9.3.2 BPSK解 9.3.3 BPS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值