叉乘分配律的几何证明

本文通过两种几何方法详细证明了向量叉乘的分配律,利用计算机图形学中叉乘的几何意义,结合三棱柱和平行四边形的性质,直观展示(a+b)×c=a×c+b×c的正确性。
摘要由CSDN通过智能技术生成

叉乘分配律的几何证明

方法1

叉乘常被用于计算机图形学求平面法向量计算。
叉乘的物理意义可以理解成力矩。力是可以合成与分解的,所以叉乘当然支持分配律。
下面使用几何的方式证明:

( a ⃗ + b ⃗ ) × c ⃗ = a ⃗ × c ⃗ + b ⃗ × c ⃗ (\vec{a}+\vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c} (a +b )×c =a ×c +b ×c

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JFmn8FKM-1612510802820)(geogebra-export.png)]
在这里插入图片描述

( a ⃗ + b ⃗ ) × c ⃗ = ( O A ⃗ + A F ⃗ ) × O C ⃗ = O F ⃗ × O C ⃗ = S O F E C ⋅ n 1 ⃗ (\vec{a}+\vec{b}) \times \vec{c} = (\vec{OA}+\vec{AF}) \times \vec{OC} = \vec{OF} \times \vec{OC} = S_{OFEC}\cdot \vec{n1} (a +b )×c =(OA +AF )×OC =OF ×OC =SOFEC

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 向量叉乘向量的结果是一个向量,这个向量垂直于原来两个向量所在的平面,并且方向由右手定则决定。如果再用这个向量叉乘原来的其中一个向量,得到的向量就是三个向量构成的体积。这个体积的大小等于原来两个向量所在平面上的平行四边形的面积,方向由右手定则决定。因此,向量叉乘向量叉乘向量几何意义是计算三个向量所构成的体积。 ### 回答2: 向量叉乘是指给定两个向量,通过运算得到一个新的向量。当一个向量与另一个向量进行叉乘后再与另一个向量再次进行叉乘,这种操作的几何意义是构造一个垂直于原始平面的新向量。 具体来说,假设有向量A和向量B,根据向量叉乘定义,得到向量C=A×B。向量C垂直于原始平面,其方向可由右手法则确定。意味着C与向量A和向量B共面,并且C的大小等于A和B所在平面的面积乘以sinθ,其中θ为A和B之间的夹角。 当我们将C与向量B进行叉乘后,得到向量D=C×B。向量D不再垂直于原始平面,而是沿着A和B共线的方向。这是因为向量B的方向与向量C共面,所以向量D与向量C共线,并且其方向由右手法则确定。向量D的大小等于C和B所在平面的面积乘以sinφ,其中φ为C和B之间的夹角。 因此,当一个向量与另一个向量进行叉乘后再与另一个向量再次进行叉乘时,结果向量沿着原始平面的垂直方向和共线方向分别表达了原始平面的法向量和垂直向量。这种操作可以用于计算平面的法线方向、计算两个向量构成的平面的面积,或者用于构造与多个向量共面且垂直于它们的向量。 ### 回答3: 向量叉乘是一种在三维空间中定义的运算,它用来产生一个新的向量,该向量与原来的两个向量垂直,并且符合右手法则。向量叉乘有一个重要的几何意义,即两个向量叉乘结果可以得到一个垂直于这两个向量所构成的平面的向量。 当我们对一个向量a叉乘向量b再叉乘向量c时,可以表示为(a×b)×c。这个结果代表了一个新的向量,它垂直于向量a×b和向量c所构成的平面。具体来说,向量a×b所表示的是一个平面,而向量c在该平面上的垂直向量,所以(a×b)×c表示了平面上的一个垂直于该平面的向量几何意义上来讲,向量a×b表示了由向量a和向量b所构成的平面的法向量,而(a×b)×c则表示了由向量a、向量b和向量c所构成的平面的法向量。具体来说,这个法向量垂直于这个平面并指向其中一个方向。这个结果在三维几何中有广泛的应用,例如计算平面的法向量、计算线段之间的夹角等。 总之,向量叉乘向量叉乘向量几何意义是得到一个垂直于两个向量构成的平面的向量,它在几何上表示了这个平面的法向量,可以用来解决与平面相关的几何问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值