假设检验

假设检验是统计学中用于判断总体参数假设是否成立的方法,通过原假设(H0)和备择假设(H1)设定,依据小概率事件原理决定是否拒绝原假设。错误类型包括第I类错误(拒真)和第II类错误(纳伪),显著性水平α控制第I类错误概率。检验方式有双侧和单侧,检验统计量用于决策。假设检验步骤包括设定假设、抽样、构建统计量、确定拒绝域和比较。选择合适的假设检验能帮助我们谨慎评估新方法或技术的效果。
摘要由CSDN通过智能技术生成

一、定义与原理

 通俗来说,假设检验就是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。

在一定的统计假设的前提下,如果发生了小概率事件,我们就有理由怀疑假设的真实性,从而拒绝接受该假设即“小概率事件原理”,亦即小概率事件在我们日常观察中一般是不会发生的。

二、假设检验中的假设

 由定义可知,我们需要对结果进行假设,然后拿样本数据去验证这个假设。所以做假设检验时会设置两个假设:

 一种叫原假设,也叫零假设,用 H 0 H_0 H0表示。原假设一般是统计者想要拒绝的假设。另外一种叫备择假设,用 H 1 H_1 H1表示。备则假设是统计者想要接受的假设。

 为什么统计者想要拒绝的假设放在原假设呢?因为原假设被拒绝如果出错的话,只能犯第I类错误,而犯第I类错误的概率已经被规定的显著性水平所控制。

三、“拒真”、“纳伪”错误

 我们通过样本数据来判断总体参数的假设是否成立,但样本是随机的,因而有可能出现小概率的错误。这种错误分两种,一种是“拒真”错误,另一种是“纳伪”错误。

 “拒真”错误也叫第I类错误:它是指原假设实际上是真的,但通过样本估计总体后,拒绝了原假设。

 “纳伪”错误也叫第II类错误:它是指原假设实际上假的,但通过样本估计总体后,接受了原假设。

为什么应该尽量避免第一类错误?第一类错误是可以通过显著性水平来控制的,意味着 H 0 H_0 H0是受到保护的,也就是说 H 0 H_0 H0 H 1 H_1 H1的地位不对等。

该如何选取呢?选取合适的 H 0 H_0 H0 H 1 H_1 H1使得两类错误中后果严重的错误为第一类错误;如果两类错误中,没有一类错误的后果严重、需要避免时,常常取原假设为维持现状,即取 H 0 H_0 H0为“无效益”,“无改进”。实际上我们感兴趣的是“提高效益”,但对采用新技术应持谨慎态度,一旦原假设被拒绝,表示有较强的理由去采用新技术。

四、显著性水平

 显著性水平是指当原假设实际上正确时,检验统计量落在拒绝域的概率,简单理解就是犯“拒真”错误的概率。这个值是我们做假设检验之前统计者根据业务情况定好的。

 显著性水平越低,就表示原假设越难被推翻,假设检验越保守。显著性水平越高,就表示原假设越容易被否定,假设检验越激进。

 如果 p ≤ α p\le \alpha pα,也就是小概率事件发生了,那么我们认为这是不正常的,因为样本是简单随机样本,我们随机取一组样本就发生了,天下没有那么凑巧的事,所以我们就认为假设错误,于是拒绝原假设。

五、检验方式

 检验方式分为两种:双侧检验和单侧检验。单侧检验又分为两种:左侧检验和右侧检验。

六、检验统计量

 据以对原假设和备择假设作出决策的某个样本统计量,称为检验统计量。

七、拒绝域

 拒绝域是由显著性水平围成的区域。

 拒绝域的功能主要用来判断假设检验是否拒绝原假设的。如果样本观测计算出来的检验统计量的具体数值落在拒绝域内,就拒绝原假设,否则不拒绝原假设。

八、假设检验步骤

  1. 提出原假设与备择假设
  2. 从所研究总体中出抽取一个随机样本
  3. 构造检验统计量
  4. 根据显著性水平确定拒绝域临界值
  5. 计算检验统计量与临界值进行比较

详见:假设检验——这一篇文章就够了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值