numpy之向量化函数

本文介绍了NumPy库中的一些核心向量化函数和操作,包括where函数用于根据条件选择数组元素,数学和统计方法如mean、sum计算数组的统计值,布尔值数组的方法如any和all进行逻辑判断,排序功能对数组进行排序,以及集合操作如unique查找数组中的唯一值。这些功能极大地提高了数据处理的效率和便利性。
摘要由CSDN通过智能技术生成

numpy的一个很大的优点就是通过向量化,大幅提高运算效率,这里介绍一些常用的向量化函数。

一、where函数

numpy.where函数是三元表达式x if condition else y的向量化版本,常用于根据一个数组来生成一个新的数组

假设有两个数值数组和一个布尔值数组:

a = np.array([2, 4, 9, 16])
b = np.array([1, 3, 10, 17])
c = np.array([True, False, False, True])

c中的元素为True时,取a中的元素,否则取b中的元素,那么就可以用numpy.where函数:

r = np.where(c, a, b)
r # 结果:array([ 2,  3, 10, 16])

其中,ab可以为数组或标量。

二、数学和统计方法

许多关于计算整个数组统计值或关于轴向数据的数学函数,可以作为数组类型的方法被调用。像meansum等函数可以接收一个可选参数axis,这个参数可以用于计算给定轴向上的统计值,形成一个下降一维度的数组,即axis=0表示列上的统计值,axis=1表示行上的统计值:

对于下列数组ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值