【每日AI】什么是维数?

维数

在处理各种数据集时,维数通常是一个令人困惑的概念。从物理角度看,维度是空间维度:长度、宽度和高度。(为了简单起见,我们不把时间当作第四维度来深入研究物理学。)在任何现实生活的场景中,我们遇到的都不超过这三个维度。

但是,当我们处理用于机器学习的数据时,通常有几十个、数百个甚至更多个维度。为了理解这些高维度,我们需要研究维度的基本性质。

空间维度的定义使得每个维度都与其他两个维度垂直或正交。这种正交性对于三维空间中的所有点都有唯一表示至关重要。如果维度不是互相正交的,则空间中的相同点可以具有多种表示形式,并且基于此的整个数学计算将失败。

例如,如果我们将三个坐标设置为长度、宽度和高度,并具有任意的原点(原点的精确位置仅会更改坐标值,但不会影响唯一性属性,因此只要它在整个计算过程中保持不变,任何原点的选择都是可以的。)

坐标(0,0,0)标记原点本身的位置。坐标(1,1,1)将标记一个点空间,该点空间在每个维度中均距原点1个单位,并且是唯一的。没有其他坐标系可以表示空间中的相同位置。

现在,让我们将这个概念扩展到更高的维度。在数学上添加更多的维度相对容易,但是很难在空间上可视化它们。如果我们添加第四个维度,则它必须与之前的所有三个维度都正交。在这样的四维空间中,原点的坐标为(0,0,0,0)。三维空间中的点(1,1,1)可以在四维空间中具有坐标(1,1,1,0)。

只要确保正交性,就可以保证坐标的唯一性。同样地,我们可以有任意数量的维度,所有的数学计算仍然成立。

就拿鸢尾花数据示例,输入有4个特征:萼片和花瓣的长度和宽度。由于这4个特征相互独立,所以它们可以看作是正交的。因此,当使用鸢尾花数据解决问题时,即依据这四个因素对数据进行分类时,我们实际上是在处理四维输入空间。

图片

 维数灾难

即使从数学的角度来看,增加任意数量的维度都是可以的,但是仍然存在一个问题。随着维度的增加,数据的密度呈指数下降。

例如,如果我们在训练数据中有1000个数据点,并且数据具有3个独有的特征。假设所有特征的值在1~10之间。所有这1000个数据点都位于一个大小为10×10×10的立方体中。因此,密度为1000/1000或每单位立方体1个样本。如果有5个独有的特征而不是3个,那么数据的密度很快就会下降到每单位5维立方体0.01个样本。

数据的密度很重要,因为数据的密度越高,找到一个好模型的可能性就越大,模型准确性的置信度就越高。如果密度很低,则使用该数据的训练模型的置信度就会很低。因此,尽管高维在数学上是可以接受的,但是人们需要注意维数,以便能够开发出具有高置信度的良好的机器学习模型。

结语: 在机器学习中的维数可以理解为数据的特征,依据这些维数(特征)进行分类,所以说可以有很多维度,用坐标来表示(0,1,0,1,……)

当数据量一定时,我们要对数据进行分类,即训练出模型(可以理解为一个模型代表一类),当维数越多时,即训练出单个模型所依据的数据变少,即数据密度降低,不利于训练出模型,即是维数危机。

十年脑血栓:

十年脑血栓是几年

哈哈哈,如果你笑了别忘了给个一键三连哟!!!

<think>好的,我需要回答用户关于Python pandas库的功能和作用的问题,并且要结合他们提供的引用内容。首先,我需要回顾用户提供的引用内容,看看里面提到了哪些关键点。 用户提供了五个引用,其中大部分是关于Pandas的数据结构、数据操作、应用场景以及处理XML和时间序列的功能。引用[1]提到Pandas是基于NumPy的库,用于快速分析数据,类似于Excel或SQL,有两种数据结构:Series和DataFrame。引用[2]具体说明了DataFrame的基本操作,如增删改查。引用[3]详细列举了Pandas的应用场景,包括数据导入导出、预处理、分析、可视化、大规模数据处理和时间序列分析。引用[4]提到了Pandas处理XML文件的能力,引用[5]则涉及时间序列的处理。 接下来,我需要将这些信息整合成一个结构化的回答。用户的问题分为两部分:Pandas是什么,以及它的用途。根据引用内容,Pandas是一个基于NumPy的数据处理库,核心数据结构是Series和DataFrame。用途方面,需要覆盖数据导入导出、清洗、分析、可视化、处理大规模数据和时间序列,以及处理XML等非表格数据。 需要注意的是,用户可能希望回答不仅涵盖基本功能,还要突出Pandas的优势和实际应用场景。例如,引用[3]中提到的数据预处理和分析的具体操作,如填充缺失值、聚合分组等,这些都是Pandas的强项。同时,引用[4]和[5]提到的XML处理和时间序列分析,可以作为扩展用途,展示Pandas的多功能性。 另外,用户之前的对话中涉及AI整合多源数据生成可视化仪表盘,因此可能需要强调Pandas在数据清洗和预处理中的角色,作为整个数据分析流程的基础步骤。例如,在引用[3]中提到的数据清洗和预处理,可以与之前讨论的AI自动化流程相结合,说明Pandas如何为后续分析提供干净的数据。 最后,需要确保回答符合用户的要求:结构清晰,分点说明,使用中文,正确应用引用标注。同时,生成的相关问题应基于回答内容,引导用户深入探讨Pandas的不同方面,如数据结构、实际应用案例或高级功能。</think>### **Python Pandas库的功能与作用详解** --- #### **一、Pandas库是什么?** **Pandas** 是基于 **NumPy** 构建的Python开源库,专为**结构化数据**处理而设计,提供高效、灵活的数据操作接口。其核心数据结构为 **Series(一组)** 和 **DataFrame(二表格)**,支持类似Excel或SQL的直观操作方式[^1]。 - **核心特点**: - 支持表格化数据(如CSV、Excel、数据库表)的快速读写与处理 - 提供丰富的数据清洗、转换、分析工具 - 与NumPy、Matplotlib等库无缝集成,形成完整的数据科学生态 --- #### **二、Pandas的核心功能与用途** ##### **1. 数据导入与导出** - **支持格式**:CSV、Excel、SQL、JSON、XML[^4]、HTML等 ```python import pandas as pd # 从Excel读取数据 df = pd.read_excel("data.xlsx") # 导出为CSV df.to_csv("output.csv", index=False) ``` ##### **2. 数据清洗与预处理** - **常见操作**: - 处理缺失值:`df.dropna()`(删除缺失值)或`df.fillna(0)`(填充默认值) - 去重:`df.drop_duplicates()` - 类型转换:`df["列名"].astype("int")` - 数据过滤:`df[df["销售额"] > 1000]` - 列重命名:`df.rename(columns={"旧列名": "新列名"})`[^3] ##### **3. 数据分析与计算** - **统计计算**: ```python df.describe() # 快速统计均值、标准差、分位等 df["列名"].sum() # 求和 df.corr() # 计算列间相关系 ``` - **聚合与分组**: ```python # 按“地区”分组,计算各区域平均销售额 df.groupby("地区")["销售额"].mean() ``` ##### **4. 数据合并与重塑** - **合并数据**: ```python pd.concat([df1, df2]) # 纵向堆叠 pd.merge(df1, df2, on="公共列") # 类似SQL的JOIN操作 ``` - **数据透视表**: ```python df.pivot_table(index="日期", columns="产品", values="销量", aggfunc="sum") ``` ##### **5. 时间序列分析** - **日期处理**: ```python # 生成时间序列 dates = pd.date_range("20230101", periods=6) # 输出:DatetimeIndex(['2023-01-01', ..., '2023-01-06'], freq='D')[^5] # 按周重采样数据 df.resample("W").mean() ``` ##### **6. 简单数据可视化** - **集成Matplotlib**: ```python df["销售额"].plot(kind="line") # 绘制折线图 df.plot.scatter(x="广告费", y="销售额") # 散点图 ``` ##### **7. 扩展应用** - **处理非结构化数据**:如XML文件解析[^4] ```python # 读取XML文件示例 df = pd.read_xml("data.xml") ``` - **大规模数据优化**:通过分块处理(`chunksize`参)或与Dask集成提升性能[^3] --- #### **三、典型应用场景** 1. **商业分析**:从CRM系统导出客户数据,分析购买行为(如引用[3]中的客户流失率计算) 2. **金融建模**:股票时间序列分析、投资组合收益统计 3. **科学研究**:实验数据的清洗与统计验证 4. **自动化报表**:连接数据库生成每日销售看板(如引用[3]中与BI工具的结合) --- #### **四、代码示例:DataFrame基本操作** ```python import pandas as pd # 创建DataFrame data = {"姓名": ["张三", "李四"], "年龄": [25, 30], "城市": ["北京", "上海"]} df = pd.DataFrame(data) # 新增列 df["入职年份"] = [2020, 2018] # 筛选年龄大于28的记录 result = df[df["年龄"] > 28] print(result) ``` **输出**: ``` 姓名 年龄 城市 入职年份 1 李四 30 上海 2018 ``` --- ### **相关问题** 1. Pandas中Series和DataFrame的主要区别是什么? 2. 如何处理大型数据集的内存优化问题? 3. Pandas在时间序列分析中有哪些高级功能? 4. 如何将Pandas与机器学习库(如scikit-learn)结合使用?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TUSTer_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值