[笔记][总结] MIT线性代数 Gilbert Strang 复矩阵

作者水平有限,欢迎大家提出文中错误

复线性空间

重新提一下,线性空间的定义

V V V是一个非空集合,其元素 x , y , z x,y,z x,y,z被称为向量; K K K是一个数域,有元素 k , l , m k,l,m k,l,m V V V被称为一个向量空间或线性空间,当:

  1. V V V中定义加法运算,当 x , y ∈ V x,y\in V x,yV,有唯一的和 x + y ∈ V x+y\in V x+yV,且加法满足
    a) 结合律 x + ( y + z ) = ( z + y ) + z x+(y+z)=(z+y)+z x+(y+z)=(z+y)+z
    b) 交换律 x + y = y + x x+y=y+x x+y=y+x
    c) 存在零元 0 0 0,使 x + 0 = x x+0=x x+0=x
    d) 每个元素都存在负元素,即 ∀ x ∈ V , ∃ y ∈ V , x + y = 0 \forall x \in V,\exists y \in V,x+y=0 xV,yV,x+y=0,称y为x的负元素,记作 − x -x x
  2. V V V中定义数乘运算,当 x ∈ V , k ∈ K x\in V,k\in K xV,kK,有唯一的乘积 k v ∈ V kv\in V kvV,且数乘运算满足:
    e) 数因子分配律 k ( x + y ) = k x + k y k(x+y)=kx+ky k(x+y)=kx+ky
    f) 分配律 ( k + l ) x = k x + l x (k+l)x=kx+lx (k+l)x=kx+lx
    g) 结合律 k ( l x ) = ( k l ) x k(lx)=(kl)x k(lx)=(kl)x
    h) 1 x = x 1x=x 1x=x

注意线性空间 V V V是基于数域 K K K的,一般的默认数域是实数域 R \mathbb R R,本部分将讨论数域为复数域 C \mathbb C C的线性空间的中的矩阵运算及性质。

从实数域到复数域

向量模长

实向量 v v v的模长是
∥ v ∥ = v T v \left\|v\right\|=v^Tv v=vTv
对于复向量 z z z
z T z = ∑ i = 1 n z i ⋅ z i z^Tz=\sum\limits_{i=1}^n z_i\cdot z_i zTz=i=1nzizi
关键问题在于 z i ⋅ z i = R e 2 { z i } − I m 2 { z i } z_i\cdot z_i=Re^2\{z_i\}-Im^2\{z_i\} zizi=Re2{zi}Im2{zi}

z i ⋅ z i ˉ = R e 2 { z i } + I m 2 { z i } z_i\cdot \bar{z_i}=Re^2\{z_i\}+Im^2\{z_i\} ziziˉ=Re2{zi}+Im2{zi}才是正确的求和项
所以对于复向量,其模长为
∥ z ∥ = z ˉ T z \left\|z\right\|=\bar z^Tz z=zˉTz
其中算子 ⋅ ˉ T \bar \cdot^T ˉT又被记作 ⋅ H \cdot^H H,叫做 H e r m i t i a n Hermitian Hermitian算子
∥ z ∥ = z H z \left\|z\right\|=z^Hz z=zHz

内积

相应的,复向量 x , y x,y x,y,内积为 x H y x^Hy xHy

H e r m i t i a n Hermitian Hermitian矩阵

对于实矩阵而言,要想使得特征值都是实数,且存在相互正交的特征向量,需要 A = A T A=A^T A=AT,即实对称矩阵

而对于复矩阵,同样的要求需要 A H = A A^H=A AH=A,为 H e r m i t i a n Hermitian Hermitian矩阵

可见 H e r m i t i a n Hermitian Hermitian矩阵的对角元都是实数

酉矩阵

实标准正交矩阵有性质
q i T q j = { 0 ,   i f   i ≠ j 1 ,   i f   i = j q_i^Tq_j= \left\{ \begin{aligned} 0,\ if\ i\not=j\\ 1,\ if\ i=j \end{aligned} \right. qiTqj={0, if i=j1, if i=j
Q T Q = I Q^TQ=I QTQ=I
在复空间,与标准正交阵相对应的矩阵称为酉矩阵 U = [ u 1   u 2   ⋯   u n ] U=[u_1\ u_2\ \cdots \ u_n] U=[u1 u2  un]
U   f o r   u n i t a r y U\ for\ unitary U for unitary
u i H u j = { 0 ,   i f   i ≠ j 1 ,   i f   i = j u_i^Hu_j= \left\{ \begin{aligned} 0,\ if\ i\not=j\\ 1,\ if\ i=j \end{aligned} \right. uiHuj={0, if i=j1, if i=j
U H U = I U^HU=I UHU=I

F o u r i e r Fourier Fourier矩阵

F o u r i e r Fourier Fourier矩阵是十分出名的酉矩阵
F n = [ 1 1 1 ⋯ 1 1 w n w n 2 ⋯ w n n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 w n n − 1 w n 2 ( n − 1 ) ⋯ w n ( n − 1 ) ( n − 1 ) ] F_n= \left[ \begin{matrix} 1&1&1&\cdots&1\\ 1&w_n&w^2_n &\cdots&w^{n-1}_n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&w^{n-1}_n&w^{2(n-1)}_n&\cdots&w^{(n-1)(n-1)}_n\\ \end{matrix} \right] Fn=1111wnwnn11wn2wn2(n1)1wnn1wn(n1)(n1)
注意到 F n F_n Fn是对称的,但不是对称矩阵,因为 F n F_n Fn是复矩阵,另外也不是 H e r m i t i a n Hermitian Hermitian矩阵 F o u r i e r Fourier Fourier矩阵的各列是相互正交的,是一个酉矩阵

通项
( F n ) i j = w n i j ,    i , j = 0 , 1 ⋯ ( n − 1 ) (F_n)_{ij}=w^{ij}_n,\ \ i,j=0,1\cdots(n-1) (Fn)ij=wnij,  i,j=0,1(n1)
其中 w n = e i 2 π n w_n=e^{i\frac{2\pi}{n}} wn=ein2π,可见 w m ∗ n m = w n w^m_{m*n}=w_n wmnm=wn w n w_n wn在复平面单位圆,辐角为 2 π n \frac{2\pi}{n} n2π

F 4 = [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] = [ 1 1 1 1 1 i − 1 − i 1 − 1 1 − 1 1 − i − 1 i ] F_4= \left[ \begin{matrix} 1&1&1&1\\ 1&i&i^2 &i^3\\ 1&i^2&i^4&i^6\\ 1&i^3&i^6&i^9\\ \end{matrix} \right]= \left[ \begin{matrix} 1&1&1&1\\ 1&i&-1 &-i\\ 1&-1&1&-1\\ 1&-i&-1&i\\ \end{matrix} \right] F4=11111ii2i31i2i4i61i3i6i9=11111i1i11111i1i
F 4 F_4 F4可以完成对一个四维复列向量的离散傅里叶变换

F o u r i e r Fourier Fourier逆矩阵

F n − 1 F_n^{-1} Fn1同样是十分有用的复矩阵,由于其列向量(或行向量)并不标准(并非单位向量),但是各列向量模长都是 n \sqrt n n F n H F n = n I F_n^HF_n=nI FnHFn=nI
F n − 1 = 1 n F n H = 1 n F ˉ n F_n^{-1}= \frac{1}{n}F^H_n=\frac{1}{n}\bar F_n Fn1=n1FnH=n1Fˉn
F n − 1 = 1 n [ 1 1 1 ⋯ 1 1 w ˉ n w ˉ n 2 ⋯ w ˉ n n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ 1 w ˉ n n − 1 w ˉ n 2 ( n − 1 ) ⋯ w ˉ n ( n − 1 ) ( n − 1 ) ] F_n^{-1}=\frac{1}{n} \left[ \begin{matrix} 1&1&1&\cdots&1\\ 1&\bar w_n&\bar w^2_n &\cdots&\bar w^{n-1}_n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&\bar w^{n-1}_n&\bar w^{2(n-1)}_n&\cdots&\bar w^{(n-1)(n-1)}_n\\ \end{matrix} \right] Fn1=n11111wˉnwˉnn11wˉn2wˉn2(n1)1wˉnn1wˉn(n1)(n1)
上面 F 4 F_4 F4的逆矩阵为
F 4 − 1 = 1 4 [ 1 1 1 1 1 − i − 1 i 1 − 1 1 − 1 1 i − 1 − i ] F_4^{-1}= \frac{1}{4} \left[ \begin{matrix} 1&1&1&1\\ 1&-i&-1 &i\\ 1&-1&1&-1\\ 1&i&-1&-i\\ \end{matrix} \right] F41=4111111i1i11111i1i

F F T FFT FFT

F o u r i e r Fourier Fourier矩阵可以使得时域序列变换到频域,十分有用的矩阵,如果直接使用 F n F_{n} Fn左乘时域序列,其时间复杂度是 O ( n 2 ) O(n^2) O(n2),实际上 F o u r i e r Fourier Fourier矩阵可以被分解为一系列稀疏矩阵,分解后对序列的变换算法的时间复杂度大大降低到 O ( n ⋅ l o g n ) O(n\cdot logn) O(nlogn),被称为快速傅里叶变换 ( F a s t   f o u r i e r   t r a n s f o r m a t i o n ) (Fast\ fourier\ transformation) (Fast fourier transformation),在[笔记][总结] MIT线性代数 Gilbert Strang 矩阵的应用中有介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值