Windows下使用chatglm.cpp的量化模型以实现普通电脑配置也可以来使用ChatGLM3-6B

chatglm.cpp是使用cpu驱动,在加上量化以后降低参数精度,可以让cpu配置不够好的情况下也能使用ChatGLM3-6B。由于本人对于C++和Python并不熟悉,可能在文章会有一些错误理解,请读者谅解。

ChatCLM3的GitHub官方链接:

GitHub - THUDM/ChatGLM3: ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型

chatglm.cpp量化模型的GitHub官方链接:

GitHub - li-plus/chatglm.cpp:ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4 的C++实现

首先git环境和python环境肯定是要提前准备好的,然后进入到Windows的命令行模式,cd到我们要保存该项目的目录下,后文所指的chatglm安装所在的绝对路径皆是该路径。

1.将ChatGLM.cpp存储库克隆到本地计算机中:

git clone --recursive https://github.com/li-plus/chatglm.cpp.git &am
### 关于 `chatglm-cpp` 项目的详细介绍 #### 项目概述 `chatglm-cpp` 是一个用于高效运行 ChatGLM 模型的 C++ 实现。此版本旨在提供一种轻量级的方法来部署大型语言模型 (LLM),特别是针对资源受限环境下的应用需求。 #### 安装与编译指南 为了使该库能够正常工作,在本地环境中完成其编译过程至关重要。具体操作如下所示: 通过执行一系列 shell 命令来进行安装和构建[^1]: ```bash cd chatglm.cpp && cmake -B build && cmake --build build -j --config Release ``` 这段指令会进入 `chatglm.cpp` 文件夹内,并创建一个新的构建目录 (`build`) 来存放编译后的文件;接着使用多线程加速的方式(`-j`)按照发布模式(`Release`)编译整个工程。 #### 使用说明 一旦成功编译了 `chatglm-cpp` 库之后,就可以将其集成到其他应用程序当中去。对于如何实际运用这个库的具体指导可能依赖于官方文档或其他社区贡献者的教程资料。通常情况下,开发者们可以通过链接静态或动态库的形式引入必要的函数接口,进而调用底层优化过的运算逻辑处理自然语言任务。 #### 源码结构分析 深入理解 `chatglm-cpp` 的内部工作机制有助于更好地维护和发展该项目。以下是几个值得关注的关键组件及其功能描述: - **CMakeLists.txt**: 这是一个配置脚本文件,定义了项目所需的外部依赖关系以及各个模块之间的相互作用方式。 - **src/** : 存放着核心算法实现的核心代码片段,包括但不限于矩阵乘法、激活函数计算等基本单元操作。 - **include/** :包含了所有公开头文件的位置,这些头文件提供了对外部可见的功能声明和服务接口定义。 - **examples/** :这里收集了一些简单的例子程序用来展示怎样快速上手使用这套工具集解决问题实例。 综上所述,`chatglm-cpp` 不仅简化了 LLMs 在不同平台上的移植性和兼容性挑战,同时也为研究者和技术人员探索更高效的推理机制开辟了一条新路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值