回顾
在前面的文章中介绍了使用梯度下降法解决回归问题。那么使用如何解决二分问题呢?
问题
现在有这么一个数据集
D=x,y
其中
x
是观测到的数据,
数据集
我们使用matlab造一个数据集出来。
% 创建测试数据
x1 = [normrnd(3,1,40,1) normrnd(3,2,40,1)];
x2 = [normrnd(7,1,40,1) normrnd(6,2,40,1)];
hold off;
plot(x1(:,1),x1(:,2),'or');
hold on;
plot(x2(:,1),x2(:,2),'ob');
y1 = zeros(40,1);
y2 = ones(40,1);
x = [x1;x2];
y = [y1;y2];
hold off;
数据的值为:
D =
1.5764 1.8386 0
1.1573 4.6626 0
3.1160 3.1710 0
3.3631 2.4825 0
3.1122 3.9442 0
2.3633 1.1272 0
2.4668 4.7144 0
1.2313 2.2046 0
4.0816 3.4433 0
3.6820 6.8999 0
3.3439 2.3597 0
2.8488 5.1085 0
4.0656 3.4616 0
2.2035 7.1164 0
3.8557 4.4835 0
4.3226 2.2885 0
6.0615 0.7585 0
2.4069 4.0333 0
2.9405 0.0246 0
3.6190 -0.3831 0
3.4319 5.0499 0
4.7547 0.5282 0
1.0382 2.2332 0
3.7447 4.8796 0
3.9460 -0.3395 0
4.8710 -0.9450 0
4.3029 3.2495 0
2.0460 3.8779 0
2.2227 -0.1015 0
2.0860 2.4868 0
3.1852 5.5069 0
2.5845 1.6710 0
2.5240 1.0334 0
0.8195 4.4851 0
3.5216 3.3754 0
4.1698 2.6556 0
4.9099 1.5497 0
3.7109 6.1300 0
3.7440 0.5363 0
2.5802 -0.9823 0
6.6795 7.8466 1.0000
6.9358 5.0137 1.0000
6.2642 8.0141 1.0000
8.8116 4.0538 1.0000
7.4373 7.0817 1.0000
6.0725 4.4535 1.0000
5.1592 2.6908 1.0000
6.8279 5.9248 1.0000
8.1433 5.4880 1.0000
6.8186 5.3189 1.0000
8.0123 6.7615 1.0000
6.9431 6.6514 1.0000
6.4406 4.6153 1.0000
6.6724 6.3087 1.0000
6.9785 3.4098 1.0000
6.5140 7.9431 1.0000
7.6444 2.4133 1.0000
8.2008 3.7157 1.0000
7.4970 3.8444 1.0000
5.9602 5.5373 1.0000
7.4493 6.2110 1.0000
6.6591 6.8626 1.0000
6.7736 8.0535 1.0000
5.1214 6.4982 1.0000
7.6140 2.6426 1.0000
7.2352 5.1972 1.0000
7.9788 7.0529 1.0000
7.4953 10.8854 1.0000
6.0268 5.5639 1.0000
7.3062 6.3531 1.0000
7.9649 5.8976 1.0000
6.5187 8.1833 1.0000
6.7009 7.4581 1.0000
4.7819 6.3288 1.0000
5.7821 5.8203 1.0000
7.6720 7.9396 1.0000
9.4654 1.2340 1.0000
6.1818 9.1185 1.0000
7.9709 8.0687 1.0000
8.7071 7.0849 1.0000
为了能直观表示这些数据,我们根据y值使用不同颜色将其绘出。
将x,y,z画为立体图,效果如下:
模型
在上一篇文章中,我们使用了 y=wx+b 这种函数来进行线性拟合,这个问题的y值不是0,就是1。使用上述函数很难快速逼近0-1。为了解决这个问题,我们给出一个激活函数。
使用matlab绘制出该函数曲线:
>> x = -10:0.1:10;
>> y = 1 ./ (1+ exp(-x));
>> plot(x,y)
这个函数叫做Logistic函数,或Sigmoid函数。可以看到他在x趋向于无穷小时,逼近0 ,在x趋向于无穷大时逼近与0 。它的因变量取值为(0,1) ,与概率的取值范围相同。在自变量靠近0点的时候,y值的变化比较陡峭,这样它就会对x的变化敏感。
我们让上述公式中的 z=wTx 就构成了我们的模型
其中w为参数列向量, x为样本列向量。
也许有人问,
z=wTx+b
的那个b去哪里了。我们将x变换为增广向量。 即
x=[1,x1,x2,x3,x4,...,xk]
这种形式。那么w的第0个分量
w0
就是原本公式中的b。
参数估计
给出上述数据集,估计出
w
就是参数估计。首先构造一个损失函数。因为
最大似然估计是,给定一组样本,找到一个参数使得使用该参数时,样本出现的概率最大。
使用 x(i) 和 y(i) 表示样本i 的数据和类别。
我们令
最大似然函数
这个概率越大越好,那么设损失函数为它的相反数。
为了找到让损失函数最小的w,我们仍然使用梯度下降法。具体做法是,首先对 l(w) 求导,然后在迭代时使用 下面的公式
w=w−a˙∂l(w)∂w
求导
为了对这个公式求导,我们先对f(z)和z(x)进行求导。
可以看到, f(z) 的导数就是 f(z)(1−f(z))
对 l(x) 求w的偏导数。为了简化过程,我们省略所有公式中所有上标
这个公式是如此的熟悉,和线性回归的公式很相似。线性回归中
f=wx
,这里
f=sigmoid(wx)
,但形式是相同的,都是
(估计值 - 真实值)*自变量,然后所有样本的这个值求和
迭代公式为:
其中f-y表示估计值和真实值的差,这个差越大说明w需要调整的越多,它也参数需要调整的量成正比。x越大需要调整的越多。
python实现
http://blog.csdn.net/taiji1985/article/details/51250860
matlab实现
function [w,f,c,accury] = lr_predict(x,y)
[n,k] = size(x); % n为样本数 ,k为维度
%增广x
x = [ones(n,1) x ];
%随机生成w初值
w = rand(1,k+1); % 弄一个横向量方便 求 wx
olde = 0;
e = 1;
eps = 0.0001 ;
rate = 0.01;
i = 0; %计数器
while true
z = w*x';
f = 1./(1+exp(-z));
e = sum(abs(f-y'))/n; %误差 '
w = w - rate*(f-y')*x; % 更新权值
d = abs(olde -e); %计算两次误差的变化
fprintf('%d iter e = %f , d = %f \n',i,e,d);
if d < eps
break;
end
olde =e;
i= i+1;
end
c = f>0.5;
accury = (n - sum(abs(c-y')))/n; %准确率
fprintf('accury is %f ',accury);
% 创建测试数据
seed = 333;
rand('seed',seed)
x1 = [normrnd(3,1,40,1) normrnd(3,2,40,1)];
x2 = [normrnd(7,1,40,1) normrnd(6,2,40,1)];
fig_on = 1;
if fig_on
hold off;
plot(x1(:,1),x1(:,2),'or');
hold on;
plot(x2(:,1),x2(:,2),'ob');
end
y1 = zeros(40,1);
y2 = ones(40,1);
x = [x1;x2];
y = [y1;y2];
if fig_on
hold off;
figure(2);
plot3(x1(:,1),x1(:,2),y1,'or');
hold on;
plot3(x2(:,1),x2(:,2),y2,'ob');
end
%surf(x(:,1),x(:,2),y);
% 进行分类
[w,f,c,a] = lr_predict(x,y)
if fig_on
hold off;
figure(3);
plot(x1(:,1),x1(:,2),'or');
hold on;
plot(x2(:,1),x2(:,2),'ob');
xe = x(find(c ~= y'),:)
plot(xe(:,1),xe(:,2),'sm','MarkerSize',10,'LineWidth',2);
%mm = min(x);
%mx = max(x);
%xx = mm(1):0.1:mx(1);
%yy = (w(1)+w(2)*xx)/w(3);
%plot(xx,yy);
end
实验结果
紫色为错分。
matlab输出结果为
0 iter e = 0.476728 , d = 0.476728
1 iter e = 0.527496 , d = 0.050768
2 iter e = 0.499542 , d = 0.027954
3 iter e = 0.485917 , d = 0.013625
4 iter e = 0.543169 , d = 0.057251
5 iter e = 0.499576 , d = 0.043593
6 iter e = 0.488516 , d = 0.011060
7 iter e = 0.553108 , d = 0.064592
8 iter e = 0.499505 , d = 0.053603
9 iter e = 0.487229 , d = 0.012276
10 iter e = 0.544575 , d = 0.057346
11 iter e = 0.499370 , d = 0.045205
12 iter e = 0.484179 , d = 0.015191
13 iter e = 0.532477 , d = 0.048298
14 iter e = 0.499217 , d = 0.033260
15 iter e = 0.481059 , d = 0.018158
16 iter e = 0.520977 , d = 0.039918
17 iter e = 0.498982 , d = 0.021995
18 iter e = 0.476170 , d = 0.022812
19 iter e = 0.510895 , d = 0.034724
20 iter e = 0.498714 , d = 0.012181
21 iter e = 0.471163 , d = 0.027551
22 iter e = 0.499601 , d = 0.028438
23 iter e = 0.498290 , d = 0.001311
24 iter e = 0.463343 , d = 0.034947
25 iter e = 0.492636 , d = 0.029293
26 iter e = 0.497855 , d = 0.005219
27 iter e = 0.456635 , d = 0.041220
28 iter e = 0.479775 , d = 0.023140
29 iter e = 0.497030 , d = 0.017256
30 iter e = 0.443815 , d = 0.053215
31 iter e = 0.478942 , d = 0.035127
32 iter e = 0.496471 , d = 0.017529
33 iter e = 0.438143 , d = 0.058328
34 iter e = 0.456484 , d = 0.018341
35 iter e = 0.494499 , d = 0.038015
36 iter e = 0.412978 , d = 0.081521
37 iter e = 0.473886 , d = 0.060908
38 iter e = 0.494617 , d = 0.020731
39 iter e = 0.420671 , d = 0.073946
40 iter e = 0.412639 , d = 0.008031
41 iter e = 0.487323 , d = 0.074684
42 iter e = 0.345426 , d = 0.141897
43 iter e = 0.482066 , d = 0.136640
44 iter e = 0.492669 , d = 0.010603
45 iter e = 0.409059 , d = 0.083610
46 iter e = 0.329026 , d = 0.080033
47 iter e = 0.459020 , d = 0.129994
48 iter e = 0.160198 , d = 0.298822
49 iter e = 0.323109 , d = 0.162911
50 iter e = 0.453148 , d = 0.130038
51 iter e = 0.148804 , d = 0.304344
52 iter e = 0.277777 , d = 0.128973
53 iter e = 0.423044 , d = 0.145267
54 iter e = 0.133613 , d = 0.289431
55 iter e = 0.173894 , d = 0.040281
56 iter e = 0.347993 , d = 0.174099
57 iter e = 0.457374 , d = 0.109381
58 iter e = 0.199874 , d = 0.257501
59 iter e = 0.378111 , d = 0.178237
60 iter e = 0.464773 , d = 0.086662
61 iter e = 0.258071 , d = 0.206702
62 iter e = 0.402756 , d = 0.144686
63 iter e = 0.468620 , d = 0.065864
64 iter e = 0.292597 , d = 0.176024
65 iter e = 0.368138 , d = 0.075541
66 iter e = 0.453801 , d = 0.085663
67 iter e = 0.229217 , d = 0.224584
68 iter e = 0.336790 , d = 0.107573
69 iter e = 0.436250 , d = 0.099459
70 iter e = 0.163286 , d = 0.272964
71 iter e = 0.232334 , d = 0.069048
72 iter e = 0.356480 , d = 0.124146
73 iter e = 0.150146 , d = 0.206334
74 iter e = 0.236759 , d = 0.086612
75 iter e = 0.299827 , d = 0.063068
76 iter e = 0.407203 , d = 0.107377
77 iter e = 0.099765 , d = 0.307438
78 iter e = 0.109024 , d = 0.009258
79 iter e = 0.137674 , d = 0.028651
80 iter e = 0.166169 , d = 0.028494
81 iter e = 0.263474 , d = 0.097305
82 iter e = 0.267471 , d = 0.003997
83 iter e = 0.377094 , d = 0.109624
84 iter e = 0.082407 , d = 0.294687
85 iter e = 0.082223 , d = 0.000184
86 iter e = 0.082569 , d = 0.000347
87 iter e = 0.082813 , d = 0.000244
88 iter e = 0.083618 , d = 0.000805
89 iter e = 0.084850 , d = 0.001232
90 iter e = 0.086432 , d = 0.001582
91 iter e = 0.090219 , d = 0.003787
92 iter e = 0.093099 , d = 0.002880
93 iter e = 0.103860 , d = 0.010761
94 iter e = 0.109086 , d = 0.005226
95 iter e = 0.139819 , d = 0.030733
96 iter e = 0.151821 , d = 0.012001
97 iter e = 0.231801 , d = 0.079980
98 iter e = 0.230153 , d = 0.001648
99 iter e = 0.335810 , d = 0.105658
100 iter e = 0.108298 , d = 0.227512
101 iter e = 0.136344 , d = 0.028046
102 iter e = 0.135687 , d = 0.000657
103 iter e = 0.196323 , d = 0.060637
104 iter e = 0.191395 , d = 0.004928
105 iter e = 0.288650 , d = 0.097254
106 iter e = 0.168363 , d = 0.120287
107 iter e = 0.253856 , d = 0.085494
108 iter e = 0.190190 , d = 0.063667
109 iter e = 0.283906 , d = 0.093716
110 iter e = 0.158495 , d = 0.125411
111 iter e = 0.234220 , d = 0.075725
112 iter e = 0.178957 , d = 0.055263
113 iter e = 0.265306 , d = 0.086349
114 iter e = 0.161863 , d = 0.103443
115 iter e = 0.236991 , d = 0.075128
116 iter e = 0.166209 , d = 0.070782
117 iter e = 0.242725 , d = 0.076516
118 iter e = 0.159634 , d = 0.083091
119 iter e = 0.230343 , d = 0.070709
120 iter e = 0.155406 , d = 0.074936
121 iter e = 0.221664 , d = 0.066258
122 iter e = 0.149961 , d = 0.071703
123 iter e = 0.210649 , d = 0.060688
124 iter e = 0.143460 , d = 0.067189
125 iter e = 0.197445 , d = 0.053984
126 iter e = 0.135411 , d = 0.062034
127 iter e = 0.181018 , d = 0.045607
128 iter e = 0.125077 , d = 0.055941
129 iter e = 0.159931 , d = 0.034854
130 iter e = 0.111675 , d = 0.048256
131 iter e = 0.133207 , d = 0.021532
132 iter e = 0.095523 , d = 0.037684
133 iter e = 0.103705 , d = 0.008182
134 iter e = 0.080177 , d = 0.023529
135 iter e = 0.080751 , d = 0.000574
136 iter e = 0.070453 , d = 0.010298
137 iter e = 0.069785 , d = 0.000668
138 iter e = 0.066274 , d = 0.003512
139 iter e = 0.066042 , d = 0.000232
140 iter e = 0.064806 , d = 0.001236
141 iter e = 0.064808 , d = 0.000002
accury is 0.975000
w =
-10.0562 1.5878 0.4737
f =
Columns 1 through 8
0.0014 0.0028 0.0314 0.0332 0.0451 0.0035 0.0238 0.0009
Columns 9 through 16
0.1501 0.3391 0.0304 0.0520 0.1480 0.0497 0.1703 0.1283
Columns 17 through 24
0.5347 0.0155 0.0051 0.0124 0.1204 0.1101 0.0007 0.1727
Columns 25 through 32
0.0213 0.0672 0.1867 0.0081 0.0015 0.0043 0.1033 0.0065
Columns 33 through 40
0.0043 0.0015 0.0646 0.1212 0.2088 0.2685 0.0237 0.0017
Columns 41 through 48
0.9905 0.9750 0.9831 0.9980 0.9959 0.8795 0.4102 0.9809
Columns 49 through 56
0.9971 0.9740 0.9981 0.9888 0.9348 0.9797 0.9496 0.9882
Columns 57 through 64
0.9712 0.9937 0.9818 0.9124 0.9939 0.9842 0.9926 0.8119
Columns 65 through 72
0.9730 0.9858 0.9983 0.9994 0.9216 0.9928 0.9969 0.9896
Columns 73 through 80
0.9889 0.6962 0.8998 0.9982 0.9972 0.9887 0.9989 0.9995
c =
Columns 1 through 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0
Columns 15 through 28
0 0 1 0 0 0 0 0 0 0 0 0 0 0
Columns 29 through 42
0 0 0 0 0 0 0 0 0 0 0 0 1 1
Columns 43 through 56
1 1 1 1 0 1 1 1 1 1 1 1 1 1
Columns 57 through 70
1 1 1 1 1 1 1 1 1 1 1 1 1 1
Columns 71 through 80
1 1 1 1 1 1 1 1 1 1
a =
0.9750
xe =
6.0615 0.7585
5.1592 2.6908